ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq GIF version

Theorem dvdsabseq 11818
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 11765 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpr 110 . . . . . . 7 ((𝑀𝑁𝑁𝑀) → 𝑁𝑀)
3 breq1 4001 . . . . . . . . 9 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
4 0dvds 11784 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
54adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀𝑀 = 0))
6 zcn 9229 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76abs00ad 11040 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((abs‘𝑀) = 0 ↔ 𝑀 = 0))
87bicomd 141 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
98adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
105, 9bitrd 188 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀 ↔ (abs‘𝑀) = 0))
113, 10sylan9bb 462 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = 0))
12 fveq2 5507 . . . . . . . . . . 11 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
13 abs0 11033 . . . . . . . . . . 11 (abs‘0) = 0
1412, 13eqtrdi 2224 . . . . . . . . . 10 (𝑁 = 0 → (abs‘𝑁) = 0)
1514adantr 276 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0)
1615eqeq2d 2187 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0))
1711, 16bitr4d 191 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = (abs‘𝑁)))
182, 17syl5ib 154 . . . . . 6 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁)))
1918expd 258 . . . . 5 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
2019expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
21 simprl 529 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
22 simpr 110 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2322adantl 277 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
24 neqne 2353 . . . . . . . 8 𝑁 = 0 → 𝑁 ≠ 0)
2524adantr 276 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0)
26 dvdsleabs2 11817 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
2721, 23, 25, 26syl3anc 1238 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
28 simpr 110 . . . . . . . . . . . . 13 ((𝑁𝑀𝑀𝑁) → 𝑀𝑁)
29 breq1 4001 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
30 0dvds 11784 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
31 zcn 9229 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3231abs00ad 11040 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
33 eqcom 2177 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑁) = 0 ↔ 0 = (abs‘𝑁))
3432, 33bitr3di 195 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁)))
3530, 34bitrd 188 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3635adantl 277 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3729, 36sylan9bb 462 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ 0 = (abs‘𝑁)))
38 fveq2 5507 . . . . . . . . . . . . . . . . 17 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3938, 13eqtrdi 2224 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (abs‘𝑀) = 0)
4039adantr 276 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0)
4140eqeq1d 2184 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁)))
4237, 41bitr4d 191 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ (abs‘𝑀) = (abs‘𝑁)))
4328, 42syl5ib 154 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → (abs‘𝑀) = (abs‘𝑁)))
4443a1dd 48 . . . . . . . . . . 11 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
4544expcomd 1439 . . . . . . . . . 10 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
4645expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
4722adantl 277 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
48 simprl 529 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
49 neqne 2353 . . . . . . . . . . . . . 14 𝑀 = 0 → 𝑀 ≠ 0)
5049adantr 276 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0)
51 dvdsleabs2 11817 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
5247, 48, 50, 51syl3anc 1238 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
53 eqcom 2177 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑁) = (abs‘𝑀))
5431abscld 11156 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
556abscld 11156 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℝ)
56 letri3 8012 . . . . . . . . . . . . . . . . 17 (((abs‘𝑁) ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5754, 55, 56syl2anr 290 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5853, 57bitrid 192 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = (abs‘𝑁) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5958biimprd 158 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)))
6059expd 258 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6160adantl 277 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6252, 61syld 45 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6362a1d 22 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6463expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
65 0z 9235 . . . . . . . . . . . 12 0 ∈ ℤ
66 zdceq 9299 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
6765, 66mpan2 425 . . . . . . . . . . 11 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
68 exmiddc 836 . . . . . . . . . . 11 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
6967, 68syl 14 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7069adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7146, 64, 70mpjaod 718 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
7271com34 83 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7372adantl 277 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7427, 73mpdd 41 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
7574expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
76 zdceq 9299 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
7765, 76mpan2 425 . . . . . 6 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
78 exmiddc 836 . . . . . 6 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
7977, 78syl 14 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8079adantl 277 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8120, 75, 80mpjaod 718 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
821, 81mpcom 36 . 2 (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))
8382imp 124 1 ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2146  wne 2345   class class class wbr 3998  cfv 5208  cr 7785  0cc0 7786  cle 7967  cz 9224  abscabs 10972  cdvds 11760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-dvds 11761
This theorem is referenced by:  dvdseq  11819
  Copyright terms: Public domain W3C validator