Proof of Theorem dvdsabseq
| Step | Hyp | Ref
| Expression |
| 1 | | dvdszrcl 11957 |
. . 3
⊢ (𝑀 ∥ 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 2 | | simpr 110 |
. . . . . . 7
⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → 𝑁 ∥ 𝑀) |
| 3 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
| 4 | | 0dvds 11976 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
| 5 | 4 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
| 6 | | zcn 9331 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 7 | 6 | abs00ad 11230 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ →
((abs‘𝑀) = 0 ↔
𝑀 = 0)) |
| 8 | 7 | bicomd 141 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0)) |
| 9 | 8 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0)) |
| 10 | 5, 9 | bitrd 188 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑀 ↔
(abs‘𝑀) =
0)) |
| 11 | 3, 10 | sylan9bb 462 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 ↔ (abs‘𝑀) = 0)) |
| 12 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (abs‘𝑁) =
(abs‘0)) |
| 13 | | abs0 11223 |
. . . . . . . . . . 11
⊢
(abs‘0) = 0 |
| 14 | 12, 13 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (abs‘𝑁) = 0) |
| 15 | 14 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0) |
| 16 | 15 | eqeq2d 2208 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0)) |
| 17 | 11, 16 | bitr4d 191 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 ↔ (abs‘𝑀) = (abs‘𝑁))) |
| 18 | 2, 17 | imbitrid 154 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁))) |
| 19 | 18 | expd 258 |
. . . . 5
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
| 20 | 19 | expcom 116 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
| 21 | | simprl 529 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈
ℤ) |
| 22 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
| 23 | 22 | adantl 277 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈
ℤ) |
| 24 | | neqne 2375 |
. . . . . . . 8
⊢ (¬
𝑁 = 0 → 𝑁 ≠ 0) |
| 25 | 24 | adantr 276 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0) |
| 26 | | dvdsleabs2 12011 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) |
| 27 | 21, 23, 25, 26 | syl3anc 1249 |
. . . . . 6
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) |
| 28 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝑀 ∥ 𝑁) |
| 29 | | breq1 4036 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 = 0 → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
| 30 | | 0dvds 11976 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
| 31 | | zcn 9331 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 32 | 31 | abs00ad 11230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℤ →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
| 33 | | eqcom 2198 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘𝑁) = 0
↔ 0 = (abs‘𝑁)) |
| 34 | 32, 33 | bitr3di 195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁))) |
| 35 | 30, 34 | bitrd 188 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 0 =
(abs‘𝑁))) |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑁 ↔ 0 =
(abs‘𝑁))) |
| 37 | 29, 36 | sylan9bb 462 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 ↔ 0 = (abs‘𝑁))) |
| 38 | | fveq2 5558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = 0 → (abs‘𝑀) =
(abs‘0)) |
| 39 | 38, 13 | eqtrdi 2245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 = 0 → (abs‘𝑀) = 0) |
| 40 | 39 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0) |
| 41 | 40 | eqeq1d 2205 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁))) |
| 42 | 37, 41 | bitr4d 191 |
. . . . . . . . . . . . 13
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) = (abs‘𝑁))) |
| 43 | 28, 42 | imbitrid 154 |
. . . . . . . . . . . 12
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → (abs‘𝑀) = (abs‘𝑁))) |
| 44 | 43 | a1dd 48 |
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))) |
| 45 | 44 | expcomd 1452 |
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
| 46 | 45 | expcom 116 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))) |
| 47 | 22 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈
ℤ) |
| 48 | | simprl 529 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈
ℤ) |
| 49 | | neqne 2375 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑀 = 0 → 𝑀 ≠ 0) |
| 50 | 49 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0) |
| 51 | | dvdsleabs2 12011 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁 ∥ 𝑀 → (abs‘𝑁) ≤ (abs‘𝑀))) |
| 52 | 47, 48, 50, 51 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 → (abs‘𝑁) ≤ (abs‘𝑀))) |
| 53 | | eqcom 2198 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘𝑀) =
(abs‘𝑁) ↔
(abs‘𝑁) =
(abs‘𝑀)) |
| 54 | 31 | abscld 11346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℝ) |
| 55 | 6 | abscld 11346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℝ) |
| 56 | | letri3 8107 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘𝑁)
∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)))) |
| 57 | 54, 55, 56 | syl2anr 290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑁) =
(abs‘𝑀) ↔
((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)))) |
| 58 | 53, 57 | bitrid 192 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) =
(abs‘𝑁) ↔
((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)))) |
| 59 | 58 | biimprd 158 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)) →
(abs‘𝑀) =
(abs‘𝑁))) |
| 60 | 59 | expd 258 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑁) ≤
(abs‘𝑀) →
((abs‘𝑀) ≤
(abs‘𝑁) →
(abs‘𝑀) =
(abs‘𝑁)))) |
| 61 | 60 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
((abs‘𝑁) ≤
(abs‘𝑀) →
((abs‘𝑀) ≤
(abs‘𝑁) →
(abs‘𝑀) =
(abs‘𝑁)))) |
| 62 | 52, 61 | syld 45 |
. . . . . . . . . . 11
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))) |
| 63 | 62 | a1d 22 |
. . . . . . . . . 10
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
| 64 | 63 | expcom 116 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
𝑀 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))) |
| 65 | | 0z 9337 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 66 | | zdceq 9401 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑀 = 0) |
| 67 | 65, 66 | mpan2 425 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ →
DECID 𝑀 =
0) |
| 68 | | exmiddc 837 |
. . . . . . . . . . 11
⊢
(DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
| 69 | 67, 68 | syl 14 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
| 70 | 69 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
| 71 | 46, 64, 70 | mpjaod 719 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
| 72 | 71 | com34 83 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
| 73 | 72 | adantl 277 |
. . . . . 6
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
| 74 | 27, 73 | mpdd 41 |
. . . . 5
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
| 75 | 74 | expcom 116 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
𝑁 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
| 76 | | zdceq 9401 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 77 | 65, 76 | mpan2 425 |
. . . . . 6
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
| 78 | | exmiddc 837 |
. . . . . 6
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
| 79 | 77, 78 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
| 80 | 79 | adantl 277 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
| 81 | 20, 75, 80 | mpjaod 719 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
| 82 | 1, 81 | mpcom 36 |
. 2
⊢ (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))) |
| 83 | 82 | imp 124 |
1
⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) |