ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq GIF version

Theorem dvdsabseq 12014
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 11959 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpr 110 . . . . . . 7 ((𝑀𝑁𝑁𝑀) → 𝑁𝑀)
3 breq1 4037 . . . . . . . . 9 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
4 0dvds 11978 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
54adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀𝑀 = 0))
6 zcn 9333 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76abs00ad 11232 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((abs‘𝑀) = 0 ↔ 𝑀 = 0))
87bicomd 141 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
98adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
105, 9bitrd 188 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀 ↔ (abs‘𝑀) = 0))
113, 10sylan9bb 462 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = 0))
12 fveq2 5559 . . . . . . . . . . 11 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
13 abs0 11225 . . . . . . . . . . 11 (abs‘0) = 0
1412, 13eqtrdi 2245 . . . . . . . . . 10 (𝑁 = 0 → (abs‘𝑁) = 0)
1514adantr 276 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0)
1615eqeq2d 2208 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0))
1711, 16bitr4d 191 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = (abs‘𝑁)))
182, 17imbitrid 154 . . . . . 6 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁)))
1918expd 258 . . . . 5 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
2019expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
21 simprl 529 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
22 simpr 110 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2322adantl 277 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
24 neqne 2375 . . . . . . . 8 𝑁 = 0 → 𝑁 ≠ 0)
2524adantr 276 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0)
26 dvdsleabs2 12013 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
2721, 23, 25, 26syl3anc 1249 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
28 simpr 110 . . . . . . . . . . . . 13 ((𝑁𝑀𝑀𝑁) → 𝑀𝑁)
29 breq1 4037 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
30 0dvds 11978 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
31 zcn 9333 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3231abs00ad 11232 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
33 eqcom 2198 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑁) = 0 ↔ 0 = (abs‘𝑁))
3432, 33bitr3di 195 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁)))
3530, 34bitrd 188 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3635adantl 277 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3729, 36sylan9bb 462 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ 0 = (abs‘𝑁)))
38 fveq2 5559 . . . . . . . . . . . . . . . . 17 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3938, 13eqtrdi 2245 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (abs‘𝑀) = 0)
4039adantr 276 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0)
4140eqeq1d 2205 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁)))
4237, 41bitr4d 191 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ (abs‘𝑀) = (abs‘𝑁)))
4328, 42imbitrid 154 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → (abs‘𝑀) = (abs‘𝑁)))
4443a1dd 48 . . . . . . . . . . 11 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
4544expcomd 1452 . . . . . . . . . 10 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
4645expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
4722adantl 277 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
48 simprl 529 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
49 neqne 2375 . . . . . . . . . . . . . 14 𝑀 = 0 → 𝑀 ≠ 0)
5049adantr 276 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0)
51 dvdsleabs2 12013 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
5247, 48, 50, 51syl3anc 1249 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
53 eqcom 2198 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑁) = (abs‘𝑀))
5431abscld 11348 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
556abscld 11348 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℝ)
56 letri3 8109 . . . . . . . . . . . . . . . . 17 (((abs‘𝑁) ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5754, 55, 56syl2anr 290 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5853, 57bitrid 192 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = (abs‘𝑁) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5958biimprd 158 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)))
6059expd 258 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6160adantl 277 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6252, 61syld 45 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6362a1d 22 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6463expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
65 0z 9339 . . . . . . . . . . . 12 0 ∈ ℤ
66 zdceq 9403 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
6765, 66mpan2 425 . . . . . . . . . . 11 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
68 exmiddc 837 . . . . . . . . . . 11 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
6967, 68syl 14 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7069adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7146, 64, 70mpjaod 719 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
7271com34 83 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7372adantl 277 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7427, 73mpdd 41 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
7574expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
76 zdceq 9403 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
7765, 76mpan2 425 . . . . . 6 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
78 exmiddc 837 . . . . . 6 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
7977, 78syl 14 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8079adantl 277 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8120, 75, 80mpjaod 719 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
821, 81mpcom 36 . 2 (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))
8382imp 124 1 ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  cr 7880  0cc0 7881  cle 8064  cz 9328  abscabs 11164  cdvds 11954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-dvds 11955
This theorem is referenced by:  dvdseq  12015
  Copyright terms: Public domain W3C validator