ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq GIF version

Theorem dvdsabseq 11853
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 11799 . . 3 (𝑀𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 simpr 110 . . . . . . 7 ((𝑀𝑁𝑁𝑀) → 𝑁𝑀)
3 breq1 4007 . . . . . . . . 9 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
4 0dvds 11818 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
54adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀𝑀 = 0))
6 zcn 9258 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76abs00ad 11074 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((abs‘𝑀) = 0 ↔ 𝑀 = 0))
87bicomd 141 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
98adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0))
105, 9bitrd 188 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑀 ↔ (abs‘𝑀) = 0))
113, 10sylan9bb 462 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = 0))
12 fveq2 5516 . . . . . . . . . . 11 (𝑁 = 0 → (abs‘𝑁) = (abs‘0))
13 abs0 11067 . . . . . . . . . . 11 (abs‘0) = 0
1412, 13eqtrdi 2226 . . . . . . . . . 10 (𝑁 = 0 → (abs‘𝑁) = 0)
1514adantr 276 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0)
1615eqeq2d 2189 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0))
1711, 16bitr4d 191 . . . . . . 7 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 ↔ (abs‘𝑀) = (abs‘𝑁)))
182, 17imbitrid 154 . . . . . 6 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁)))
1918expd 258 . . . . 5 ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
2019expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
21 simprl 529 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
22 simpr 110 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2322adantl 277 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
24 neqne 2355 . . . . . . . 8 𝑁 = 0 → 𝑁 ≠ 0)
2524adantr 276 . . . . . . 7 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0)
26 dvdsleabs2 11852 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
2721, 23, 25, 26syl3anc 1238 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (abs‘𝑀) ≤ (abs‘𝑁)))
28 simpr 110 . . . . . . . . . . . . 13 ((𝑁𝑀𝑀𝑁) → 𝑀𝑁)
29 breq1 4007 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
30 0dvds 11818 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
31 zcn 9258 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3231abs00ad 11074 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
33 eqcom 2179 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑁) = 0 ↔ 0 = (abs‘𝑁))
3432, 33bitr3di 195 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁)))
3530, 34bitrd 188 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3635adantl 277 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 = (abs‘𝑁)))
3729, 36sylan9bb 462 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ 0 = (abs‘𝑁)))
38 fveq2 5516 . . . . . . . . . . . . . . . . 17 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3938, 13eqtrdi 2226 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (abs‘𝑀) = 0)
4039adantr 276 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0)
4140eqeq1d 2186 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁)))
4237, 41bitr4d 191 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 ↔ (abs‘𝑀) = (abs‘𝑁)))
4328, 42imbitrid 154 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → (abs‘𝑀) = (abs‘𝑁)))
4443a1dd 48 . . . . . . . . . . 11 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁𝑀𝑀𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
4544expcomd 1441 . . . . . . . . . 10 ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
4645expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
4722adantl 277 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
48 simprl 529 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
49 neqne 2355 . . . . . . . . . . . . . 14 𝑀 = 0 → 𝑀 ≠ 0)
5049adantr 276 . . . . . . . . . . . . 13 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0)
51 dvdsleabs2 11852 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
5247, 48, 50, 51syl3anc 1238 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → (abs‘𝑁) ≤ (abs‘𝑀)))
53 eqcom 2179 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑁) = (abs‘𝑀))
5431abscld 11190 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
556abscld 11190 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℝ)
56 letri3 8038 . . . . . . . . . . . . . . . . 17 (((abs‘𝑁) ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5754, 55, 56syl2anr 290 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5853, 57bitrid 192 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) = (abs‘𝑁) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁))))
5958biimprd 158 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)))
6059expd 258 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6160adantl 277 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑁) ≤ (abs‘𝑀) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6252, 61syld 45 . . . . . . . . . . 11 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))
6362a1d 22 . . . . . . . . . 10 ((¬ 𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
6463expcom 116 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 0 → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))))
65 0z 9264 . . . . . . . . . . . 12 0 ∈ ℤ
66 zdceq 9328 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
6765, 66mpan2 425 . . . . . . . . . . 11 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
68 exmiddc 836 . . . . . . . . . . 11 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
6967, 68syl 14 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7069adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
7146, 64, 70mpjaod 718 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))
7271com34 83 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7372adantl 277 . . . . . 6 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
7427, 73mpdd 41 . . . . 5 ((¬ 𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
7574expcom 116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 = 0 → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))))
76 zdceq 9328 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
7765, 76mpan2 425 . . . . . 6 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
78 exmiddc 836 . . . . . 6 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
7977, 78syl 14 . . . . 5 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8079adantl 277 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
8120, 75, 80mpjaod 718 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁))))
821, 81mpcom 36 . 2 (𝑀𝑁 → (𝑁𝑀 → (abs‘𝑀) = (abs‘𝑁)))
8382imp 124 1 ((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4004  cfv 5217  cr 7810  0cc0 7811  cle 7993  cz 9253  abscabs 11006  cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-dvds 11795
This theorem is referenced by:  dvdseq  11854
  Copyright terms: Public domain W3C validator