Proof of Theorem dvdsabseq
Step | Hyp | Ref
| Expression |
1 | | dvdszrcl 11732 |
. . 3
⊢ (𝑀 ∥ 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
2 | | simpr 109 |
. . . . . . 7
⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → 𝑁 ∥ 𝑀) |
3 | | breq1 3985 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
4 | | 0dvds 11751 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
5 | 4 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
6 | | zcn 9196 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
7 | 6 | abs00ad 11007 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ →
((abs‘𝑀) = 0 ↔
𝑀 = 0)) |
8 | 7 | bicomd 140 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ↔ (abs‘𝑀) = 0)) |
9 | 8 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ↔ (abs‘𝑀) = 0)) |
10 | 5, 9 | bitrd 187 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑀 ↔
(abs‘𝑀) =
0)) |
11 | 3, 10 | sylan9bb 458 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 ↔ (abs‘𝑀) = 0)) |
12 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (abs‘𝑁) =
(abs‘0)) |
13 | | abs0 11000 |
. . . . . . . . . . 11
⊢
(abs‘0) = 0 |
14 | 12, 13 | eqtrdi 2215 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (abs‘𝑁) = 0) |
15 | 14 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑁) = 0) |
16 | 15 | eqeq2d 2177 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ (abs‘𝑀) = 0)) |
17 | 11, 16 | bitr4d 190 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 ↔ (abs‘𝑀) = (abs‘𝑁))) |
18 | 2, 17 | syl5ib 153 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁))) |
19 | 18 | expd 256 |
. . . . 5
⊢ ((𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
20 | 19 | expcom 115 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
21 | | simprl 521 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈
ℤ) |
22 | | simpr 109 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
23 | 22 | adantl 275 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈
ℤ) |
24 | | neqne 2344 |
. . . . . . . 8
⊢ (¬
𝑁 = 0 → 𝑁 ≠ 0) |
25 | 24 | adantr 274 |
. . . . . . 7
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ≠ 0) |
26 | | dvdsleabs2 11784 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) |
27 | 21, 23, 25, 26 | syl3anc 1228 |
. . . . . 6
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) |
28 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝑀 ∥ 𝑁) |
29 | | breq1 3985 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 = 0 → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
30 | | 0dvds 11751 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
31 | | zcn 9196 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
32 | 31 | abs00ad 11007 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℤ →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
33 | | eqcom 2167 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘𝑁) = 0
↔ 0 = (abs‘𝑁)) |
34 | 32, 33 | bitr3di 194 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ↔ 0 = (abs‘𝑁))) |
35 | 30, 34 | bitrd 187 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 0 =
(abs‘𝑁))) |
36 | 35 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0
∥ 𝑁 ↔ 0 =
(abs‘𝑁))) |
37 | 29, 36 | sylan9bb 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 ↔ 0 = (abs‘𝑁))) |
38 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = 0 → (abs‘𝑀) =
(abs‘0)) |
39 | 38, 13 | eqtrdi 2215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 = 0 → (abs‘𝑀) = 0) |
40 | 39 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘𝑀) = 0) |
41 | 40 | eqeq1d 2174 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘𝑀) = (abs‘𝑁) ↔ 0 = (abs‘𝑁))) |
42 | 37, 41 | bitr4d 190 |
. . . . . . . . . . . . 13
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 ↔ (abs‘𝑀) = (abs‘𝑁))) |
43 | 28, 42 | syl5ib 153 |
. . . . . . . . . . . 12
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → (abs‘𝑀) = (abs‘𝑁))) |
44 | 43 | a1dd 48 |
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))) |
45 | 44 | expcomd 1429 |
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
46 | 45 | expcom 115 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))) |
47 | 22 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈
ℤ) |
48 | | simprl 521 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈
ℤ) |
49 | | neqne 2344 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑀 = 0 → 𝑀 ≠ 0) |
50 | 49 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ≠ 0) |
51 | | dvdsleabs2 11784 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑁 ∥ 𝑀 → (abs‘𝑁) ≤ (abs‘𝑀))) |
52 | 47, 48, 50, 51 | syl3anc 1228 |
. . . . . . . . . . . 12
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 → (abs‘𝑁) ≤ (abs‘𝑀))) |
53 | | eqcom 2167 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘𝑀) =
(abs‘𝑁) ↔
(abs‘𝑁) =
(abs‘𝑀)) |
54 | 31 | abscld 11123 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℝ) |
55 | 6 | abscld 11123 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℝ) |
56 | | letri3 7979 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘𝑁)
∈ ℝ ∧ (abs‘𝑀) ∈ ℝ) → ((abs‘𝑁) = (abs‘𝑀) ↔ ((abs‘𝑁) ≤ (abs‘𝑀) ∧ (abs‘𝑀) ≤ (abs‘𝑁)))) |
57 | 54, 55, 56 | syl2anr 288 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑁) =
(abs‘𝑀) ↔
((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)))) |
58 | 53, 57 | syl5bb 191 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) =
(abs‘𝑁) ↔
((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)))) |
59 | 58 | biimprd 157 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((abs‘𝑁) ≤
(abs‘𝑀) ∧
(abs‘𝑀) ≤
(abs‘𝑁)) →
(abs‘𝑀) =
(abs‘𝑁))) |
60 | 59 | expd 256 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑁) ≤
(abs‘𝑀) →
((abs‘𝑀) ≤
(abs‘𝑁) →
(abs‘𝑀) =
(abs‘𝑁)))) |
61 | 60 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
((abs‘𝑁) ≤
(abs‘𝑀) →
((abs‘𝑀) ≤
(abs‘𝑁) →
(abs‘𝑀) =
(abs‘𝑁)))) |
62 | 52, 61 | syld 45 |
. . . . . . . . . . 11
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))) |
63 | 62 | a1d 22 |
. . . . . . . . . 10
⊢ ((¬
𝑀 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
64 | 63 | expcom 115 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
𝑀 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁)))))) |
65 | | 0z 9202 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
66 | | zdceq 9266 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑀 = 0) |
67 | 65, 66 | mpan2 422 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ →
DECID 𝑀 =
0) |
68 | | exmiddc 826 |
. . . . . . . . . . 11
⊢
(DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
69 | 67, 68 | syl 14 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
70 | 69 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
71 | 46, 64, 70 | mpjaod 708 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → ((abs‘𝑀) ≤ (abs‘𝑁) → (abs‘𝑀) = (abs‘𝑁))))) |
72 | 71 | com34 83 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
73 | 72 | adantl 275 |
. . . . . 6
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → ((abs‘𝑀) ≤ (abs‘𝑁) → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
74 | 27, 73 | mpdd 41 |
. . . . 5
⊢ ((¬
𝑁 = 0 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
75 | 74 | expcom 115 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
𝑁 = 0 → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))))) |
76 | | zdceq 9266 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
77 | 65, 76 | mpan2 422 |
. . . . . 6
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
78 | | exmiddc 826 |
. . . . . 6
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
79 | 77, 78 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
80 | 79 | adantl 275 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
81 | 20, 75, 80 | mpjaod 708 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁)))) |
82 | 1, 81 | mpcom 36 |
. 2
⊢ (𝑀 ∥ 𝑁 → (𝑁 ∥ 𝑀 → (abs‘𝑀) = (abs‘𝑁))) |
83 | 82 | imp 123 |
1
⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) |