ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb GIF version

Theorem mpteqb 5519
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5526. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2700 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2498 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 fneq1 5219 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((𝑥𝐴𝐵) Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
4 eqid 2140 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 5256 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
6 eqid 2140 . . . . . . . 8 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
76mptfng 5256 . . . . . . 7 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
83, 5, 73bitr4g 222 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 𝐶 ∈ V))
98biimpd 143 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐶 ∈ V))
10 r19.26 2561 . . . . . . 7 (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V))
11 nfmpt1 4029 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
12 nfmpt1 4029 . . . . . . . . . 10 𝑥(𝑥𝐴𝐶)
1311, 12nfeq 2290 . . . . . . . . 9 𝑥(𝑥𝐴𝐵) = (𝑥𝐴𝐶)
14 simpll 519 . . . . . . . . . . . 12 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
1514fveq1d 5431 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐶)‘𝑥))
164fvmpt2 5512 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716ad2ant2lr 502 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
186fvmpt2 5512 . . . . . . . . . . . 12 ((𝑥𝐴𝐶 ∈ V) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1918ad2ant2l 500 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
2015, 17, 193eqtr3d 2181 . . . . . . . . . 10 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶)
2120exp31 362 . . . . . . . . 9 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (𝑥𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)))
2213, 21ralrimi 2506 . . . . . . . 8 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))
23 ralim 2494 . . . . . . . 8 (∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2422, 23syl 14 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2510, 24syl5bir 152 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2625expd 256 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → (∀𝑥𝐴 𝐶 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶)))
279, 26mpdd 41 . . . 4 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶))
2827com12 30 . . 3 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 𝐵 = 𝐶))
29 eqid 2140 . . . 4 𝐴 = 𝐴
30 mpteq12 4019 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3129, 30mpan 421 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3228, 31impbid1 141 . 2 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
332, 32syl 14 1 (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  Vcvv 2689  cmpt 3997   Fn wfn 5126  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  eqfnfv  5526  eufnfv  5656  offveqb  6009
  Copyright terms: Public domain W3C validator