ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb GIF version

Theorem mpteqb 5551
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5558. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2720 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2517 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 fneq1 5251 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((𝑥𝐴𝐵) Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
4 eqid 2154 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 5288 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
6 eqid 2154 . . . . . . . 8 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
76mptfng 5288 . . . . . . 7 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
83, 5, 73bitr4g 222 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 𝐶 ∈ V))
98biimpd 143 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐶 ∈ V))
10 r19.26 2580 . . . . . . 7 (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V))
11 nfmpt1 4053 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
12 nfmpt1 4053 . . . . . . . . . 10 𝑥(𝑥𝐴𝐶)
1311, 12nfeq 2304 . . . . . . . . 9 𝑥(𝑥𝐴𝐵) = (𝑥𝐴𝐶)
14 simpll 519 . . . . . . . . . . . 12 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
1514fveq1d 5463 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐶)‘𝑥))
164fvmpt2 5544 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716ad2ant2lr 502 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
186fvmpt2 5544 . . . . . . . . . . . 12 ((𝑥𝐴𝐶 ∈ V) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1918ad2ant2l 500 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
2015, 17, 193eqtr3d 2195 . . . . . . . . . 10 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶)
2120exp31 362 . . . . . . . . 9 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (𝑥𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)))
2213, 21ralrimi 2525 . . . . . . . 8 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))
23 ralim 2513 . . . . . . . 8 (∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2422, 23syl 14 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2510, 24syl5bir 152 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2625expd 256 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → (∀𝑥𝐴 𝐶 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶)))
279, 26mpdd 41 . . . 4 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶))
2827com12 30 . . 3 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 𝐵 = 𝐶))
29 eqid 2154 . . . 4 𝐴 = 𝐴
30 mpteq12 4043 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3129, 30mpan 421 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3228, 31impbid1 141 . 2 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
332, 32syl 14 1 (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125  wral 2432  Vcvv 2709  cmpt 4021   Fn wfn 5158  cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fn 5166  df-fv 5171
This theorem is referenced by:  eqfnfv  5558  eufnfv  5688  offveqb  6041
  Copyright terms: Public domain W3C validator