Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr GIF version

Theorem bj-charfunr 15456
Description: If a class 𝐴 has a "weak" characteristic function on a class 𝑋, then negated membership in 𝐴 is decidable (in other words, membership in 𝐴 is testable) in 𝑋.

The hypothesis imposes that 𝑋 be a set. As usual, it could be formulated as (𝜑 → (𝐹:𝑋⟶ω ∧ ...)) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of 𝑓 were any class with testable equality to the point where (𝑋𝐴) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
Assertion
Ref Expression
bj-charfunr (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑋(𝑥)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
2 elmapi 6729 . . . . . . . . . 10 (𝑓 ∈ (ω ↑𝑚 𝑋) → 𝑓:𝑋⟶ω)
3 ffvelcdm 5695 . . . . . . . . . . 11 ((𝑓:𝑋⟶ω ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
43ex 115 . . . . . . . . . 10 (𝑓:𝑋⟶ω → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
52, 4syl 14 . . . . . . . . 9 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
6 0elnn 4655 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)))
7 nn0eln0 4656 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (∅ ∈ (𝑓𝑥) ↔ (𝑓𝑥) ≠ ∅))
87orbi2d 791 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → (((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)) ↔ ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
96, 8mpbid 147 . . . . . . . . 9 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅))
105, 9syl6 33 . . . . . . . 8 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
1110adantr 276 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
12 elin 3346 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
13 rsp 2544 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) ≠ ∅))
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → ((𝑥𝑋𝑥𝐴) → (𝑓𝑥) ≠ ∅))
1514expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1615adantr 276 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1716imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (𝑥𝐴 → (𝑓𝑥) ≠ ∅))
1817necon2bd 2425 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) = ∅ → ¬ 𝑥𝐴))
19 eldif 3166 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝐴))
20 rsp 2544 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) = ∅))
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → ((𝑥𝑋 ∧ ¬ 𝑥𝐴) → (𝑓𝑥) = ∅))
2221expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2322adantl 277 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2423imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅))
2524necon3ad 2409 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) ≠ ∅ → ¬ ¬ 𝑥𝐴))
2618, 25orim12d 787 . . . . . . . . 9 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
2726ex 115 . . . . . . . 8 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2827adantl 277 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2911, 28mpdd 41 . . . . . 6 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3029adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
311, 30rexlimddv 2619 . . . 4 (𝜑 → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3231imp 124 . . 3 ((𝜑𝑥𝑋) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
33 df-dc 836 . . 3 (DECID ¬ 𝑥𝐴 ↔ (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
3432, 33sylibr 134 . 2 ((𝜑𝑥𝑋) → DECID ¬ 𝑥𝐴)
3534ralrimiva 2570 1 (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  cdif 3154  cin 3156  c0 3450  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  𝑚 cmap 6707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-map 6709
This theorem is referenced by:  bj-charfunbi  15457
  Copyright terms: Public domain W3C validator