Proof of Theorem bj-charfunr
Step | Hyp | Ref
| Expression |
1 | | bj-charfunr.1 |
. . . . 5
⊢ (𝜑 → ∃𝑓 ∈ (ω ↑𝑚
𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) |
2 | | elmapi 6608 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (ω
↑𝑚 𝑋) → 𝑓:𝑋⟶ω) |
3 | | ffvelrn 5597 |
. . . . . . . . . . 11
⊢ ((𝑓:𝑋⟶ω ∧ 𝑥 ∈ 𝑋) → (𝑓‘𝑥) ∈ ω) |
4 | 3 | ex 114 |
. . . . . . . . . 10
⊢ (𝑓:𝑋⟶ω → (𝑥 ∈ 𝑋 → (𝑓‘𝑥) ∈ ω)) |
5 | 2, 4 | syl 14 |
. . . . . . . . 9
⊢ (𝑓 ∈ (ω
↑𝑚 𝑋) → (𝑥 ∈ 𝑋 → (𝑓‘𝑥) ∈ ω)) |
6 | | 0elnn 4576 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ ω → ((𝑓‘𝑥) = ∅ ∨ ∅ ∈ (𝑓‘𝑥))) |
7 | | nn0eln0 4577 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) ∈ ω → (∅ ∈
(𝑓‘𝑥) ↔ (𝑓‘𝑥) ≠ ∅)) |
8 | 7 | orbi2d 780 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ ω → (((𝑓‘𝑥) = ∅ ∨ ∅ ∈ (𝑓‘𝑥)) ↔ ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅))) |
9 | 6, 8 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝑓‘𝑥) ∈ ω → ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅)) |
10 | 5, 9 | syl6 33 |
. . . . . . . 8
⊢ (𝑓 ∈ (ω
↑𝑚 𝑋) → (𝑥 ∈ 𝑋 → ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅))) |
11 | 10 | adantr 274 |
. . . . . . 7
⊢ ((𝑓 ∈ (ω
↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → (𝑥 ∈ 𝑋 → ((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅))) |
12 | | elin 3290 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑋 ∩ 𝐴) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝐴)) |
13 | | rsp 2504 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ → (𝑥 ∈ (𝑋 ∩ 𝐴) → (𝑓‘𝑥) ≠ ∅)) |
14 | 12, 13 | syl5bir 152 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ → ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ≠ ∅)) |
15 | 14 | expd 256 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ → (𝑥 ∈ 𝑋 → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ≠ ∅))) |
16 | 15 | adantr 274 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → (𝑥 ∈ 𝑋 → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ≠ ∅))) |
17 | 16 | imp 123 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ≠ ∅)) |
18 | 17 | necon2bd 2385 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ∧ 𝑥 ∈ 𝑋) → ((𝑓‘𝑥) = ∅ → ¬ 𝑥 ∈ 𝐴)) |
19 | | eldif 3111 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑋 ∖ 𝐴) ↔ (𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝐴)) |
20 | | rsp 2504 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ → (𝑥 ∈ (𝑋 ∖ 𝐴) → (𝑓‘𝑥) = ∅)) |
21 | 19, 20 | syl5bir 152 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ → ((𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) = ∅)) |
22 | 21 | expd 256 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ → (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝐴 → (𝑓‘𝑥) = ∅))) |
23 | 22 | adantl 275 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝐴 → (𝑓‘𝑥) = ∅))) |
24 | 23 | imp 123 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ∧ 𝑥 ∈ 𝑋) → (¬ 𝑥 ∈ 𝐴 → (𝑓‘𝑥) = ∅)) |
25 | 24 | necon3ad 2369 |
. . . . . . . . . 10
⊢
(((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ∧ 𝑥 ∈ 𝑋) → ((𝑓‘𝑥) ≠ ∅ → ¬ ¬ 𝑥 ∈ 𝐴)) |
26 | 18, 25 | orim12d 776 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ∧ 𝑥 ∈ 𝑋) → (((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴))) |
27 | 26 | ex 114 |
. . . . . . . 8
⊢
((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → (𝑥 ∈ 𝑋 → (((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴)))) |
28 | 27 | adantl 275 |
. . . . . . 7
⊢ ((𝑓 ∈ (ω
↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → (𝑥 ∈ 𝑋 → (((𝑓‘𝑥) = ∅ ∨ (𝑓‘𝑥) ≠ ∅) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴)))) |
29 | 11, 28 | mpdd 41 |
. . . . . 6
⊢ ((𝑓 ∈ (ω
↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴))) |
30 | 29 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (ω ↑𝑚
𝑋) ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) → (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴))) |
31 | 1, 30 | rexlimddv 2579 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴))) |
32 | 31 | imp 123 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴)) |
33 | | df-dc 821 |
. . 3
⊢
(DECID ¬ 𝑥 ∈ 𝐴 ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ ¬ 𝑥 ∈ 𝐴)) |
34 | 32, 33 | sylibr 133 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → DECID ¬ 𝑥 ∈ 𝐴) |
35 | 34 | ralrimiva 2530 |
1
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴) |