Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr GIF version

Theorem bj-charfunr 16131
Description: If a class 𝐴 has a "weak" characteristic function on a class 𝑋, then negated membership in 𝐴 is decidable (in other words, membership in 𝐴 is testable) in 𝑋.

The hypothesis imposes that 𝑋 be a set. As usual, it could be formulated as (𝜑 → (𝐹:𝑋⟶ω ∧ ...)) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of 𝑓 were any class with testable equality to the point where (𝑋𝐴) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
Assertion
Ref Expression
bj-charfunr (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑋(𝑥)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
2 elmapi 6815 . . . . . . . . . 10 (𝑓 ∈ (ω ↑𝑚 𝑋) → 𝑓:𝑋⟶ω)
3 ffvelcdm 5767 . . . . . . . . . . 11 ((𝑓:𝑋⟶ω ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
43ex 115 . . . . . . . . . 10 (𝑓:𝑋⟶ω → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
52, 4syl 14 . . . . . . . . 9 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
6 0elnn 4710 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)))
7 nn0eln0 4711 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (∅ ∈ (𝑓𝑥) ↔ (𝑓𝑥) ≠ ∅))
87orbi2d 795 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → (((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)) ↔ ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
96, 8mpbid 147 . . . . . . . . 9 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅))
105, 9syl6 33 . . . . . . . 8 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
1110adantr 276 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
12 elin 3387 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
13 rsp 2577 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) ≠ ∅))
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → ((𝑥𝑋𝑥𝐴) → (𝑓𝑥) ≠ ∅))
1514expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1615adantr 276 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1716imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (𝑥𝐴 → (𝑓𝑥) ≠ ∅))
1817necon2bd 2458 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) = ∅ → ¬ 𝑥𝐴))
19 eldif 3206 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝐴))
20 rsp 2577 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) = ∅))
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → ((𝑥𝑋 ∧ ¬ 𝑥𝐴) → (𝑓𝑥) = ∅))
2221expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2322adantl 277 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2423imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅))
2524necon3ad 2442 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) ≠ ∅ → ¬ ¬ 𝑥𝐴))
2618, 25orim12d 791 . . . . . . . . 9 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
2726ex 115 . . . . . . . 8 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2827adantl 277 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2911, 28mpdd 41 . . . . . 6 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3029adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
311, 30rexlimddv 2653 . . . 4 (𝜑 → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3231imp 124 . . 3 ((𝜑𝑥𝑋) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
33 df-dc 840 . . 3 (DECID ¬ 𝑥𝐴 ↔ (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
3432, 33sylibr 134 . 2 ((𝜑𝑥𝑋) → DECID ¬ 𝑥𝐴)
3534ralrimiva 2603 1 (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  cdif 3194  cin 3196  c0 3491  ωcom 4681  wf 5313  cfv 5317  (class class class)co 6000  𝑚 cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by:  bj-charfunbi  16132
  Copyright terms: Public domain W3C validator