Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunr GIF version

Theorem bj-charfunr 15302
Description: If a class 𝐴 has a "weak" characteristic function on a class 𝑋, then negated membership in 𝐴 is decidable (in other words, membership in 𝐴 is testable) in 𝑋.

The hypothesis imposes that 𝑋 be a set. As usual, it could be formulated as (𝜑 → (𝐹:𝑋⟶ω ∧ ...)) to deal with general classes, but that extra generality would not make the theorem much more useful.

The theorem would still hold if the codomain of 𝑓 were any class with testable equality to the point where (𝑋𝐴) is sent. (Contributed by BJ, 6-Aug-2024.)

Hypothesis
Ref Expression
bj-charfunr.1 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
Assertion
Ref Expression
bj-charfunr (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Distinct variable groups:   𝐴,𝑓   𝑓,𝑋   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑋(𝑥)

Proof of Theorem bj-charfunr
StepHypRef Expression
1 bj-charfunr.1 . . . . 5 (𝜑 → ∃𝑓 ∈ (ω ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
2 elmapi 6724 . . . . . . . . . 10 (𝑓 ∈ (ω ↑𝑚 𝑋) → 𝑓:𝑋⟶ω)
3 ffvelcdm 5691 . . . . . . . . . . 11 ((𝑓:𝑋⟶ω ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
43ex 115 . . . . . . . . . 10 (𝑓:𝑋⟶ω → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
52, 4syl 14 . . . . . . . . 9 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → (𝑓𝑥) ∈ ω))
6 0elnn 4651 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)))
7 nn0eln0 4652 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (∅ ∈ (𝑓𝑥) ↔ (𝑓𝑥) ≠ ∅))
87orbi2d 791 . . . . . . . . . 10 ((𝑓𝑥) ∈ ω → (((𝑓𝑥) = ∅ ∨ ∅ ∈ (𝑓𝑥)) ↔ ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
96, 8mpbid 147 . . . . . . . . 9 ((𝑓𝑥) ∈ ω → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅))
105, 9syl6 33 . . . . . . . 8 (𝑓 ∈ (ω ↑𝑚 𝑋) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
1110adantr 276 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → ((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅)))
12 elin 3342 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋𝑥𝐴))
13 rsp 2541 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) ≠ ∅))
1412, 13biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → ((𝑥𝑋𝑥𝐴) → (𝑓𝑥) ≠ ∅))
1514expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1615adantr 276 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (𝑥𝐴 → (𝑓𝑥) ≠ ∅)))
1716imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (𝑥𝐴 → (𝑓𝑥) ≠ ∅))
1817necon2bd 2422 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) = ∅ → ¬ 𝑥𝐴))
19 eldif 3162 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑋𝐴) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝐴))
20 rsp 2541 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥 ∈ (𝑋𝐴) → (𝑓𝑥) = ∅))
2119, 20biimtrrid 153 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → ((𝑥𝑋 ∧ ¬ 𝑥𝐴) → (𝑓𝑥) = ∅))
2221expd 258 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2322adantl 277 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅)))
2423imp 124 . . . . . . . . . . 11 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (¬ 𝑥𝐴 → (𝑓𝑥) = ∅))
2524necon3ad 2406 . . . . . . . . . 10 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → ((𝑓𝑥) ≠ ∅ → ¬ ¬ 𝑥𝐴))
2618, 25orim12d 787 . . . . . . . . 9 (((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ∧ 𝑥𝑋) → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
2726ex 115 . . . . . . . 8 ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2827adantl 277 . . . . . . 7 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (((𝑓𝑥) = ∅ ∨ (𝑓𝑥) ≠ ∅) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))))
2911, 28mpdd 41 . . . . . 6 ((𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3029adantl 277 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (ω ↑𝑚 𝑋) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) ≠ ∅ ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))) → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
311, 30rexlimddv 2616 . . . 4 (𝜑 → (𝑥𝑋 → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴)))
3231imp 124 . . 3 ((𝜑𝑥𝑋) → (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
33 df-dc 836 . . 3 (DECID ¬ 𝑥𝐴 ↔ (¬ 𝑥𝐴 ∨ ¬ ¬ 𝑥𝐴))
3432, 33sylibr 134 . 2 ((𝜑𝑥𝑋) → DECID ¬ 𝑥𝐴)
3534ralrimiva 2567 1 (𝜑 → ∀𝑥𝑋 DECID ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cdif 3150  cin 3152  c0 3446  ωcom 4622  wf 5250  cfv 5254  (class class class)co 5918  𝑚 cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704
This theorem is referenced by:  bj-charfunbi  15303
  Copyright terms: Public domain W3C validator