ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul2c GIF version

Theorem nummul2c 9635
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul2c.7 ((𝑃 · 𝐴) + 𝐸) = 𝐶
nummul2c.8 (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul2c (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 9598 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2302 . . 3 𝑁 ∈ ℕ0
76nn0cni 9389 . 2 𝑁 ∈ ℂ
8 nummul1c.2 . . 3 𝑃 ∈ ℕ0
98nn0cni 9389 . 2 𝑃 ∈ ℂ
10 nummul1c.6 . . 3 𝐷 ∈ ℕ0
11 nummul1c.7 . . 3 𝐸 ∈ ℕ0
123nn0cni 9389 . . . . . 6 𝐴 ∈ ℂ
1312, 9mulcomi 8160 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1413oveq1i 6017 . . . 4 ((𝐴 · 𝑃) + 𝐸) = ((𝑃 · 𝐴) + 𝐸)
15 nummul2c.7 . . . 4 ((𝑃 · 𝐴) + 𝐸) = 𝐶
1614, 15eqtri 2250 . . 3 ((𝐴 · 𝑃) + 𝐸) = 𝐶
174nn0cni 9389 . . . 4 𝐵 ∈ ℂ
18 nummul2c.8 . . . 4 (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)
199, 17, 18mulcomli 8161 . . 3 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 9634 . 2 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
217, 9, 20mulcomli 8161 1 (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007   + caddc 8010   · cmul 8012  0cn0 9377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-inn 9119  df-n0 9378
This theorem is referenced by:  decmul2c  9651
  Copyright terms: Public domain W3C validator