ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummul2c GIF version

Theorem nummul2c 9560
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1 𝑇 ∈ ℕ0
nummul1c.2 𝑃 ∈ ℕ0
nummul1c.3 𝐴 ∈ ℕ0
nummul1c.4 𝐵 ∈ ℕ0
nummul1c.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
nummul1c.6 𝐷 ∈ ℕ0
nummul1c.7 𝐸 ∈ ℕ0
nummul2c.7 ((𝑃 · 𝐴) + 𝐸) = 𝐶
nummul2c.8 (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)
Assertion
Ref Expression
nummul2c (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4 𝑁 = ((𝑇 · 𝐴) + 𝐵)
2 nummul1c.1 . . . . 5 𝑇 ∈ ℕ0
3 nummul1c.3 . . . . 5 𝐴 ∈ ℕ0
4 nummul1c.4 . . . . 5 𝐵 ∈ ℕ0
52, 3, 4numcl 9523 . . . 4 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2279 . . 3 𝑁 ∈ ℕ0
76nn0cni 9314 . 2 𝑁 ∈ ℂ
8 nummul1c.2 . . 3 𝑃 ∈ ℕ0
98nn0cni 9314 . 2 𝑃 ∈ ℂ
10 nummul1c.6 . . 3 𝐷 ∈ ℕ0
11 nummul1c.7 . . 3 𝐸 ∈ ℕ0
123nn0cni 9314 . . . . . 6 𝐴 ∈ ℂ
1312, 9mulcomi 8085 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1413oveq1i 5961 . . . 4 ((𝐴 · 𝑃) + 𝐸) = ((𝑃 · 𝐴) + 𝐸)
15 nummul2c.7 . . . 4 ((𝑃 · 𝐴) + 𝐸) = 𝐶
1614, 15eqtri 2227 . . 3 ((𝐴 · 𝑃) + 𝐸) = 𝐶
174nn0cni 9314 . . . 4 𝐵 ∈ ℂ
18 nummul2c.8 . . . 4 (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)
199, 17, 18mulcomli 8086 . . 3 (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 9559 . 2 (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
217, 9, 20mulcomli 8086 1 (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5951   + caddc 7935   · cmul 7937  0cn0 9302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-inn 9044  df-n0 9303
This theorem is referenced by:  decmul2c  9576
  Copyright terms: Public domain W3C validator