ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi GIF version

Theorem mulcomi 8032
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcomi (𝐴 · 𝐵) = (𝐵 · 𝐴)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcom 8008 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) = (𝐵 · 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 7980
This theorem is referenced by:  mulcomli  8033  8th4div3  9210  numma2c  9502  nummul2c  9506  9t11e99  9586  binom2i  10740  fac3  10824  tanval2ap  11878  pockthi  12527  decsplit1  12597  decsplit  12598  sincosq4sgn  15065  2logb9irrALT  15210  2lgsoddprmlem2  15347  2lgsoddprmlem3d  15351
  Copyright terms: Public domain W3C validator