ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi GIF version

Theorem mulcomi 8051
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcomi (𝐴 · 𝐵) = (𝐵 · 𝐴)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcom 8027 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) = (𝐵 · 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896   · cmul 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 7999
This theorem is referenced by:  mulcomli  8052  8th4div3  9229  numma2c  9521  nummul2c  9525  9t11e99  9605  binom2i  10759  fac3  10843  tanval2ap  11897  pockthi  12554  decsplit1  12624  decsplit  12625  sincosq4sgn  15151  2logb9irrALT  15296  2lgsoddprmlem2  15433  2lgsoddprmlem3d  15437
  Copyright terms: Public domain W3C validator