ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi GIF version

Theorem mulcomi 8120
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcomi (𝐴 · 𝐵) = (𝐵 · 𝐴)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcom 8096 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) = (𝐵 · 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965   · cmul 7972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 8068
This theorem is referenced by:  mulcomli  8121  8th4div3  9298  numma2c  9591  nummul2c  9595  9t11e99  9675  binom2i  10837  fac3  10921  tanval2ap  12190  pockthi  12847  decsplit1  12917  decsplit  12918  sincosq4sgn  15468  2logb9irrALT  15613  2lgsoddprmlem2  15750  2lgsoddprmlem3d  15754
  Copyright terms: Public domain W3C validator