![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomi | GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | โข ๐ด โ โ |
axi.2 | โข ๐ต โ โ |
Ref | Expression |
---|---|
mulcomi | โข (๐ด ยท ๐ต) = (๐ต ยท ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 โข ๐ด โ โ | |
2 | axi.2 | . 2 โข ๐ต โ โ | |
3 | mulcom 7942 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) | |
4 | 1, 2, 3 | mp2an 426 | 1 โข (๐ด ยท ๐ต) = (๐ต ยท ๐ด) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 ยท cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-mulcom 7914 |
This theorem is referenced by: mulcomli 7966 8th4div3 9140 numma2c 9431 nummul2c 9435 9t11e99 9515 binom2i 10631 fac3 10714 tanval2ap 11723 pockthi 12358 sincosq4sgn 14335 2logb9irrALT 14477 2lgsoddprmlem2 14539 2lgsoddprmlem3d 14543 |
Copyright terms: Public domain | W3C validator |