ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi GIF version

Theorem mulcomi 8049
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcomi (𝐴 · 𝐵) = (𝐵 · 𝐴)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcom 8025 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) = (𝐵 · 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 7997
This theorem is referenced by:  mulcomli  8050  8th4div3  9227  numma2c  9519  nummul2c  9523  9t11e99  9603  binom2i  10757  fac3  10841  tanval2ap  11895  pockthi  12552  decsplit1  12622  decsplit  12623  sincosq4sgn  15149  2logb9irrALT  15294  2lgsoddprmlem2  15431  2lgsoddprmlem3d  15435
  Copyright terms: Public domain W3C validator