ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomi GIF version

Theorem mulcomi 8025
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
mulcomi (𝐴 · 𝐵) = (𝐵 · 𝐴)

Proof of Theorem mulcomi
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 mulcom 8001 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3mp2an 426 1 (𝐴 · 𝐵) = (𝐵 · 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-mulcom 7973
This theorem is referenced by:  mulcomli  8026  8th4div3  9201  numma2c  9493  nummul2c  9497  9t11e99  9577  binom2i  10719  fac3  10803  tanval2ap  11856  pockthi  12496  sincosq4sgn  14964  2logb9irrALT  15106  2lgsoddprmlem2  15194  2lgsoddprmlem3d  15198
  Copyright terms: Public domain W3C validator