| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5recm6rec | GIF version | ||
| Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 5recm6rec | ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5cn 9116 | . . 3 ⊢ 5 ∈ ℂ | |
| 2 | 6cn 9118 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | 5re 9115 | . . . 4 ⊢ 5 ∈ ℝ | |
| 4 | 5pos 9136 | . . . 4 ⊢ 0 < 5 | |
| 5 | 3, 4 | gt0ap0ii 8701 | . . 3 ⊢ 5 # 0 |
| 6 | 6re 9117 | . . . 4 ⊢ 6 ∈ ℝ | |
| 7 | 6pos 9137 | . . . 4 ⊢ 0 < 6 | |
| 8 | 6, 7 | gt0ap0ii 8701 | . . 3 ⊢ 6 # 0 |
| 9 | 1, 2, 5, 8 | subrecapi 8913 | . 2 ⊢ ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6)) |
| 10 | ax-1cn 8018 | . . . 4 ⊢ 1 ∈ ℂ | |
| 11 | 5p1e6 9174 | . . . 4 ⊢ (5 + 1) = 6 | |
| 12 | 2, 1, 10, 11 | subaddrii 8361 | . . 3 ⊢ (6 − 5) = 1 |
| 13 | 6t5e30 9610 | . . . 4 ⊢ (6 · 5) = ;30 | |
| 14 | 2, 1, 13 | mulcomli 8079 | . . 3 ⊢ (5 · 6) = ;30 |
| 15 | 12, 14 | oveq12i 5956 | . 2 ⊢ ((6 − 5) / (5 · 6)) = (1 / ;30) |
| 16 | 9, 15 | eqtri 2226 | 1 ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 0cc0 7925 1c1 7926 · cmul 7930 − cmin 8243 / cdiv 8745 3c3 9088 5c5 9090 6c6 9091 ;cdc 9504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-dec 9505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |