![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5recm6rec | GIF version |
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
5recm6rec | ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5cn 9064 | . . 3 ⊢ 5 ∈ ℂ | |
2 | 6cn 9066 | . . 3 ⊢ 6 ∈ ℂ | |
3 | 5re 9063 | . . . 4 ⊢ 5 ∈ ℝ | |
4 | 5pos 9084 | . . . 4 ⊢ 0 < 5 | |
5 | 3, 4 | gt0ap0ii 8649 | . . 3 ⊢ 5 # 0 |
6 | 6re 9065 | . . . 4 ⊢ 6 ∈ ℝ | |
7 | 6pos 9085 | . . . 4 ⊢ 0 < 6 | |
8 | 6, 7 | gt0ap0ii 8649 | . . 3 ⊢ 6 # 0 |
9 | 1, 2, 5, 8 | subrecapi 8861 | . 2 ⊢ ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6)) |
10 | ax-1cn 7967 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | 5p1e6 9122 | . . . 4 ⊢ (5 + 1) = 6 | |
12 | 2, 1, 10, 11 | subaddrii 8310 | . . 3 ⊢ (6 − 5) = 1 |
13 | 6t5e30 9557 | . . . 4 ⊢ (6 · 5) = ;30 | |
14 | 2, 1, 13 | mulcomli 8028 | . . 3 ⊢ (5 · 6) = ;30 |
15 | 12, 14 | oveq12i 5931 | . 2 ⊢ ((6 − 5) / (5 · 6)) = (1 / ;30) |
16 | 9, 15 | eqtri 2214 | 1 ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 0cc0 7874 1c1 7875 · cmul 7879 − cmin 8192 / cdiv 8693 3c3 9036 5c5 9038 6c6 9039 ;cdc 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-dec 9452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |