Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5recm6rec | GIF version |
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
5recm6rec | ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5cn 8958 | . . 3 ⊢ 5 ∈ ℂ | |
2 | 6cn 8960 | . . 3 ⊢ 6 ∈ ℂ | |
3 | 5re 8957 | . . . 4 ⊢ 5 ∈ ℝ | |
4 | 5pos 8978 | . . . 4 ⊢ 0 < 5 | |
5 | 3, 4 | gt0ap0ii 8547 | . . 3 ⊢ 5 # 0 |
6 | 6re 8959 | . . . 4 ⊢ 6 ∈ ℝ | |
7 | 6pos 8979 | . . . 4 ⊢ 0 < 6 | |
8 | 6, 7 | gt0ap0ii 8547 | . . 3 ⊢ 6 # 0 |
9 | 1, 2, 5, 8 | subrecapi 8757 | . 2 ⊢ ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6)) |
10 | ax-1cn 7867 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | 5p1e6 9015 | . . . 4 ⊢ (5 + 1) = 6 | |
12 | 2, 1, 10, 11 | subaddrii 8208 | . . 3 ⊢ (6 − 5) = 1 |
13 | 6t5e30 9449 | . . . 4 ⊢ (6 · 5) = ;30 | |
14 | 2, 1, 13 | mulcomli 7927 | . . 3 ⊢ (5 · 6) = ;30 |
15 | 12, 14 | oveq12i 5865 | . 2 ⊢ ((6 − 5) / (5 · 6)) = (1 / ;30) |
16 | 9, 15 | eqtri 2191 | 1 ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 0cc0 7774 1c1 7775 · cmul 7779 − cmin 8090 / cdiv 8589 3c3 8930 5c5 8932 6c6 8933 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-dec 9344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |