![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5recm6rec | GIF version |
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
5recm6rec | ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5cn 9062 | . . 3 ⊢ 5 ∈ ℂ | |
2 | 6cn 9064 | . . 3 ⊢ 6 ∈ ℂ | |
3 | 5re 9061 | . . . 4 ⊢ 5 ∈ ℝ | |
4 | 5pos 9082 | . . . 4 ⊢ 0 < 5 | |
5 | 3, 4 | gt0ap0ii 8647 | . . 3 ⊢ 5 # 0 |
6 | 6re 9063 | . . . 4 ⊢ 6 ∈ ℝ | |
7 | 6pos 9083 | . . . 4 ⊢ 0 < 6 | |
8 | 6, 7 | gt0ap0ii 8647 | . . 3 ⊢ 6 # 0 |
9 | 1, 2, 5, 8 | subrecapi 8859 | . 2 ⊢ ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6)) |
10 | ax-1cn 7965 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | 5p1e6 9119 | . . . 4 ⊢ (5 + 1) = 6 | |
12 | 2, 1, 10, 11 | subaddrii 8308 | . . 3 ⊢ (6 − 5) = 1 |
13 | 6t5e30 9554 | . . . 4 ⊢ (6 · 5) = ;30 | |
14 | 2, 1, 13 | mulcomli 8026 | . . 3 ⊢ (5 · 6) = ;30 |
15 | 12, 14 | oveq12i 5930 | . 2 ⊢ ((6 − 5) / (5 · 6)) = (1 / ;30) |
16 | 9, 15 | eqtri 2214 | 1 ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 · cmul 7877 − cmin 8190 / cdiv 8691 3c3 9034 5c5 9036 6c6 9037 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |