ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5recm6rec GIF version

Theorem 5recm6rec 9337
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
Assertion
Ref Expression
5recm6rec ((1 / 5) − (1 / 6)) = (1 / 30)

Proof of Theorem 5recm6rec
StepHypRef Expression
1 5cn 8812 . . 3 5 ∈ ℂ
2 6cn 8814 . . 3 6 ∈ ℂ
3 5re 8811 . . . 4 5 ∈ ℝ
4 5pos 8832 . . . 4 0 < 5
53, 4gt0ap0ii 8402 . . 3 5 # 0
6 6re 8813 . . . 4 6 ∈ ℝ
7 6pos 8833 . . . 4 0 < 6
86, 7gt0ap0ii 8402 . . 3 6 # 0
91, 2, 5, 8subrecapi 8611 . 2 ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6))
10 ax-1cn 7725 . . . 4 1 ∈ ℂ
11 5p1e6 8869 . . . 4 (5 + 1) = 6
122, 1, 10, 11subaddrii 8063 . . 3 (6 − 5) = 1
13 6t5e30 9300 . . . 4 (6 · 5) = 30
142, 1, 13mulcomli 7785 . . 3 (5 · 6) = 30
1512, 14oveq12i 5786 . 2 ((6 − 5) / (5 · 6)) = (1 / 30)
169, 15eqtri 2160 1 ((1 / 5) − (1 / 6)) = (1 / 30)
Colors of variables: wff set class
Syntax hints:   = wceq 1331  (class class class)co 5774  0cc0 7632  1c1 7633   · cmul 7637  cmin 7945   / cdiv 8444  3c3 8784  5c5 8786  6c6 8787  cdc 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-dec 9195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator