| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassi | GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 8125 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1371 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8097 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 2p2e4 9233 3p2e5 9248 3p3e6 9249 4p2e6 9250 4p3e7 9251 4p4e8 9252 5p2e7 9253 5p3e8 9254 5p4e9 9255 6p2e8 9256 6p3e9 9257 7p2e9 9258 numsuc 9587 nummac 9618 numaddc 9621 6p5lem 9643 5p5e10 9644 6p4e10 9645 7p3e10 9648 8p2e10 9653 binom2i 10865 resqrexlemover 11516 3dvdsdec 12371 3dvds2dec 12372 decsplit 12947 lgsdir2lem2 15702 2lgsoddprmlem3d 15783 |
| Copyright terms: Public domain | W3C validator |