| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassi | GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 8028 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1348 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 2p2e4 9136 3p2e5 9151 3p3e6 9152 4p2e6 9153 4p3e7 9154 4p4e8 9155 5p2e7 9156 5p3e8 9157 5p4e9 9158 6p2e8 9159 6p3e9 9160 7p2e9 9161 numsuc 9489 nummac 9520 numaddc 9523 6p5lem 9545 5p5e10 9546 6p4e10 9547 7p3e10 9550 8p2e10 9555 binom2i 10759 resqrexlemover 11194 3dvdsdec 12049 3dvds2dec 12050 decsplit 12625 lgsdir2lem2 15356 2lgsoddprmlem3d 15437 |
| Copyright terms: Public domain | W3C validator |