| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassi | GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 8090 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1350 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 + caddc 7963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 2p2e4 9198 3p2e5 9213 3p3e6 9214 4p2e6 9215 4p3e7 9216 4p4e8 9217 5p2e7 9218 5p3e8 9219 5p4e9 9220 6p2e8 9221 6p3e9 9222 7p2e9 9223 numsuc 9552 nummac 9583 numaddc 9586 6p5lem 9608 5p5e10 9609 6p4e10 9610 7p3e10 9613 8p2e10 9618 binom2i 10830 resqrexlemover 11436 3dvdsdec 12291 3dvds2dec 12292 decsplit 12867 lgsdir2lem2 15621 2lgsoddprmlem3d 15702 |
| Copyright terms: Public domain | W3C validator |