![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassi | GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 7988 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1348 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 (class class class)co 5906 ℂcc 7856 + caddc 7861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7960 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 2p2e4 9095 3p2e5 9109 3p3e6 9110 4p2e6 9111 4p3e7 9112 4p4e8 9113 5p2e7 9114 5p3e8 9115 5p4e9 9116 6p2e8 9117 6p3e9 9118 7p2e9 9119 numsuc 9447 nummac 9478 numaddc 9481 6p5lem 9503 5p5e10 9504 6p4e10 9505 7p3e10 9508 8p2e10 9513 binom2i 10693 resqrexlemover 11128 3dvdsdec 11980 3dvds2dec 11981 lgsdir2lem2 15073 2lgsoddprmlem3d 15122 |
Copyright terms: Public domain | W3C validator |