| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassi | GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 8055 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1350 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 + caddc 7928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8027 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 2p2e4 9163 3p2e5 9178 3p3e6 9179 4p2e6 9180 4p3e7 9181 4p4e8 9182 5p2e7 9183 5p3e8 9184 5p4e9 9185 6p2e8 9186 6p3e9 9187 7p2e9 9188 numsuc 9517 nummac 9548 numaddc 9551 6p5lem 9573 5p5e10 9574 6p4e10 9575 7p3e10 9578 8p2e10 9583 binom2i 10793 resqrexlemover 11321 3dvdsdec 12176 3dvds2dec 12177 decsplit 12752 lgsdir2lem2 15506 2lgsoddprmlem3d 15587 |
| Copyright terms: Public domain | W3C validator |