![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassi | GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 7470 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1273 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 (class class class)co 5652 ℂcc 7346 + caddc 7351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-addass 7445 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: 2p2e4 8541 3p2e5 8555 3p3e6 8556 4p2e6 8557 4p3e7 8558 4p4e8 8559 5p2e7 8560 5p3e8 8561 5p4e9 8562 6p2e8 8563 6p3e9 8564 7p2e9 8565 numsuc 8888 nummac 8919 numaddc 8922 6p5lem 8944 5p5e10 8945 6p4e10 8946 7p3e10 8949 8p2e10 8954 binom2i 10059 resqrexlemover 10439 3dvdsdec 11139 3dvds2dec 11140 |
Copyright terms: Public domain | W3C validator |