Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addassi | GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 7883 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1327 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 2p2e4 8984 3p2e5 8998 3p3e6 8999 4p2e6 9000 4p3e7 9001 4p4e8 9002 5p2e7 9003 5p3e8 9004 5p4e9 9005 6p2e8 9006 6p3e9 9007 7p2e9 9008 numsuc 9335 nummac 9366 numaddc 9369 6p5lem 9391 5p5e10 9392 6p4e10 9393 7p3e10 9396 8p2e10 9401 binom2i 10563 resqrexlemover 10952 3dvdsdec 11802 3dvds2dec 11803 lgsdir2lem2 13570 |
Copyright terms: Public domain | W3C validator |