![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassi | GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 8004 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1348 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 2p2e4 9111 3p2e5 9126 3p3e6 9127 4p2e6 9128 4p3e7 9129 4p4e8 9130 5p2e7 9131 5p3e8 9132 5p4e9 9133 6p2e8 9134 6p3e9 9135 7p2e9 9136 numsuc 9464 nummac 9495 numaddc 9498 6p5lem 9520 5p5e10 9521 6p4e10 9522 7p3e10 9525 8p2e10 9530 binom2i 10722 resqrexlemover 11157 3dvdsdec 12009 3dvds2dec 12010 lgsdir2lem2 15177 2lgsoddprmlem3d 15258 |
Copyright terms: Public domain | W3C validator |