Proof of Theorem 2lgsoddprmlem3d
| Step | Hyp | Ref
| Expression |
| 1 | | 6cn 9072 |
. . 3
⊢ 6 ∈
ℂ |
| 2 | | 8cn 9076 |
. . 3
⊢ 8 ∈
ℂ |
| 3 | | 8re 9075 |
. . . 4
⊢ 8 ∈
ℝ |
| 4 | | 8pos 9093 |
. . . 4
⊢ 0 <
8 |
| 5 | 3, 4 | gt0ap0ii 8655 |
. . 3
⊢ 8 #
0 |
| 6 | 1, 2, 5 | divcanap4i 8786 |
. 2
⊢ ((6
· 8) / 8) = 6 |
| 7 | 1, 2 | mulcli 8031 |
. . . 4
⊢ (6
· 8) ∈ ℂ |
| 8 | | ax-1cn 7972 |
. . . 4
⊢ 1 ∈
ℂ |
| 9 | | 4p3e7 9135 |
. . . . . . 7
⊢ (4 + 3) =
7 |
| 10 | 9 | eqcomi 2200 |
. . . . . 6
⊢ 7 = (4 +
3) |
| 11 | 10 | oveq1i 5932 |
. . . . 5
⊢
(7↑2) = ((4 + 3)↑2) |
| 12 | | 4cn 9068 |
. . . . . . 7
⊢ 4 ∈
ℂ |
| 13 | | 3cn 9065 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 14 | 12, 13 | binom2i 10740 |
. . . . . 6
⊢ ((4 +
3)↑2) = (((4↑2) + (2 · (4 · 3))) +
(3↑2)) |
| 15 | | sq4e2t8 10729 |
. . . . . . . . . 10
⊢
(4↑2) = (2 · 8) |
| 16 | | 2cn 9061 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
| 17 | | 4t2e8 9149 |
. . . . . . . . . . . . 13
⊢ (4
· 2) = 8 |
| 18 | 12, 16, 17 | mulcomli 8033 |
. . . . . . . . . . . 12
⊢ (2
· 4) = 8 |
| 19 | 18 | oveq1i 5932 |
. . . . . . . . . . 11
⊢ ((2
· 4) · 3) = (8 · 3) |
| 20 | 16, 12, 13 | mulassi 8035 |
. . . . . . . . . . 11
⊢ ((2
· 4) · 3) = (2 · (4 · 3)) |
| 21 | 2, 13 | mulcomi 8032 |
. . . . . . . . . . 11
⊢ (8
· 3) = (3 · 8) |
| 22 | 19, 20, 21 | 3eqtr3i 2225 |
. . . . . . . . . 10
⊢ (2
· (4 · 3)) = (3 · 8) |
| 23 | 15, 22 | oveq12i 5934 |
. . . . . . . . 9
⊢
((4↑2) + (2 · (4 · 3))) = ((2 · 8) + (3
· 8)) |
| 24 | 16, 13, 2 | adddiri 8037 |
. . . . . . . . 9
⊢ ((2 + 3)
· 8) = ((2 · 8) + (3 · 8)) |
| 25 | | 3p2e5 9132 |
. . . . . . . . . . 11
⊢ (3 + 2) =
5 |
| 26 | 13, 16, 25 | addcomli 8171 |
. . . . . . . . . 10
⊢ (2 + 3) =
5 |
| 27 | 26 | oveq1i 5932 |
. . . . . . . . 9
⊢ ((2 + 3)
· 8) = (5 · 8) |
| 28 | 23, 24, 27 | 3eqtr2i 2223 |
. . . . . . . 8
⊢
((4↑2) + (2 · (4 · 3))) = (5 ·
8) |
| 29 | | sq3 10728 |
. . . . . . . . 9
⊢
(3↑2) = 9 |
| 30 | | df-9 9056 |
. . . . . . . . 9
⊢ 9 = (8 +
1) |
| 31 | 29, 30 | eqtri 2217 |
. . . . . . . 8
⊢
(3↑2) = (8 + 1) |
| 32 | 28, 31 | oveq12i 5934 |
. . . . . . 7
⊢
(((4↑2) + (2 · (4 · 3))) + (3↑2)) = ((5 ·
8) + (8 + 1)) |
| 33 | | 5cn 9070 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
| 34 | 33, 2 | mulcli 8031 |
. . . . . . . 8
⊢ (5
· 8) ∈ ℂ |
| 35 | 34, 2, 8 | addassi 8034 |
. . . . . . 7
⊢ (((5
· 8) + 8) + 1) = ((5 · 8) + (8 + 1)) |
| 36 | | df-6 9053 |
. . . . . . . . . . 11
⊢ 6 = (5 +
1) |
| 37 | 36 | oveq1i 5932 |
. . . . . . . . . 10
⊢ (6
· 8) = ((5 + 1) · 8) |
| 38 | 33 | a1i 9 |
. . . . . . . . . . . 12
⊢ (8 ∈
ℂ → 5 ∈ ℂ) |
| 39 | | id 19 |
. . . . . . . . . . . 12
⊢ (8 ∈
ℂ → 8 ∈ ℂ) |
| 40 | 38, 39 | adddirp1d 8053 |
. . . . . . . . . . 11
⊢ (8 ∈
ℂ → ((5 + 1) · 8) = ((5 · 8) + 8)) |
| 41 | 2, 40 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((5 + 1)
· 8) = ((5 · 8) + 8) |
| 42 | 37, 41 | eqtri 2217 |
. . . . . . . . 9
⊢ (6
· 8) = ((5 · 8) + 8) |
| 43 | 42 | eqcomi 2200 |
. . . . . . . 8
⊢ ((5
· 8) + 8) = (6 · 8) |
| 44 | 43 | oveq1i 5932 |
. . . . . . 7
⊢ (((5
· 8) + 8) + 1) = ((6 · 8) + 1) |
| 45 | 32, 35, 44 | 3eqtr2i 2223 |
. . . . . 6
⊢
(((4↑2) + (2 · (4 · 3))) + (3↑2)) = ((6 ·
8) + 1) |
| 46 | 14, 45 | eqtri 2217 |
. . . . 5
⊢ ((4 +
3)↑2) = ((6 · 8) + 1) |
| 47 | 11, 46 | eqtri 2217 |
. . . 4
⊢
(7↑2) = ((6 · 8) + 1) |
| 48 | 7, 8, 47 | mvrraddi 8243 |
. . 3
⊢
((7↑2) − 1) = (6 · 8) |
| 49 | 48 | oveq1i 5932 |
. 2
⊢
(((7↑2) − 1) / 8) = ((6 · 8) / 8) |
| 50 | | 3t2e6 9147 |
. . 3
⊢ (3
· 2) = 6 |
| 51 | 13, 16, 50 | mulcomli 8033 |
. 2
⊢ (2
· 3) = 6 |
| 52 | 6, 49, 51 | 3eqtr4i 2227 |
1
⊢
(((7↑2) − 1) / 8) = (2 · 3) |