ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2bd GIF version

Theorem necon2bd 2398
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bd.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bd (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))

Proof of Theorem necon2bd
StepHypRef Expression
1 necon2bd.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 df-ne 2341 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2syl6ib 160 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
43con2d 619 1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  disjiun  3984  map0g  6666  nneo  9315  zeo2  9318  bezoutr1  11988  coprm  12098  sqrt2irr  12116  dfphi2  12174  bj-charfunr  13845  nconstwlpolem  14096
  Copyright terms: Public domain W3C validator