Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem GIF version

Theorem nconstwlpolem 16206
Description: Lemma for nconstwlpo 16207. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f (𝜑𝐹:ℝ⟶ℤ)
nconstwlpo.0 (𝜑 → (𝐹‘0) = 0)
nconstwlpo.rp ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
nconstwlpo.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpo.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
Assertion
Ref Expression
nconstwlpolem (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐹   𝑦,𝐹   𝑖,𝐺,𝑦   𝜑,𝑥   𝜑,𝑦,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐹(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4063 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 fveq2 5599 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32neeq1d 2396 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
41, 3imbi12d 234 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((0 < 𝑥 → (𝐹𝑥) ≠ 0) ↔ (0 < 𝐴 → (𝐹𝐴) ≠ 0)))
5 elrp 9812 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6 nconstwlpo.rp . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
75, 6sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝐹𝑥) ≠ 0)
87expr 375 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) ≠ 0))
98ralrimiva 2581 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) ≠ 0))
10 nconstwlpo.g . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶{0, 1})
11 nconstwlpo.a . . . . . . . . . . . 12 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
1210, 11trilpolemcl 16178 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
134, 9, 12rspcdva 2889 . . . . . . . . . 10 (𝜑 → (0 < 𝐴 → (𝐹𝐴) ≠ 0))
1413necon2bd 2436 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 0 → ¬ 0 < 𝐴))
1514imp 124 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ 0 < 𝐴)
1610adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 𝐺:ℕ⟶{0, 1})
17 simpr 110 . . . . . . . . . . . . 13 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
18 fveqeq2 5608 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐺𝑦) = 1 ↔ (𝐺𝑎) = 1))
1918cbvrexv 2743 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 ↔ ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2017, 19sylib 122 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2116, 11, 20nconstwlpolemgt0 16205 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 0 < 𝐴)
2221ex 115 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 → 0 < 𝐴))
2322con3d 632 . . . . . . . . 9 (𝜑 → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2423adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2515, 24mpd 13 . . . . . . 7 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
26 ralnex 2496 . . . . . . 7 (∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1 ↔ ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
2725, 26sylibr 134 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1)
2827r19.21bi 2596 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ¬ (𝐺𝑦) = 1)
2910ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
30 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3129, 30ffvelcdmd 5739 . . . . . 6 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) ∈ {0, 1})
32 elpri 3666 . . . . . 6 ((𝐺𝑦) ∈ {0, 1} → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3331, 32syl 14 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3428, 33ecased 1362 . . . 4 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) = 0)
3534ralrimiva 2581 . . 3 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3635orcd 735 . 2 ((𝜑 ∧ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
3710adantr 276 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐺:ℕ⟶{0, 1})
38 simpr 110 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3937, 11, 38nconstwlpolem0 16204 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐴 = 0)
4039fveq2d 5603 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = (𝐹‘0))
41 nconstwlpo.0 . . . . . . . 8 (𝜑 → (𝐹‘0) = 0)
4241adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹‘0) = 0)
4340, 42eqtrd 2240 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = 0)
4443ex 115 . . . . 5 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 → (𝐹𝐴) = 0))
4544con3d 632 . . . 4 (𝜑 → (¬ (𝐹𝐴) = 0 → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
4645imp 124 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
4746olcd 736 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
48 nconstwlpo.f . . . . 5 (𝜑𝐹:ℝ⟶ℤ)
4948, 12ffvelcdmd 5739 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℤ)
50 0z 9418 . . . 4 0 ∈ ℤ
51 zdceq 9483 . . . 4 (((𝐹𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐹𝐴) = 0)
5249, 50, 51sylancl 413 . . 3 (𝜑DECID (𝐹𝐴) = 0)
53 exmiddc 838 . . 3 (DECID (𝐹𝐴) = 0 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5452, 53syl 14 . 2 (𝜑 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5536, 47, 54mpjaodan 800 1 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  wrex 2487  {cpr 3644   class class class wbr 4059  wf 5286  cfv 5290  (class class class)co 5967  cr 7959  0cc0 7960  1c1 7961   · cmul 7965   < clt 8142   / cdiv 8780  cn 9071  2c2 9122  cz 9407  +crp 9810  cexp 10720  Σcsu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  nconstwlpo  16207
  Copyright terms: Public domain W3C validator