Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem GIF version

Theorem nconstwlpolem 15709
Description: Lemma for nconstwlpo 15710. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f (𝜑𝐹:ℝ⟶ℤ)
nconstwlpo.0 (𝜑 → (𝐹‘0) = 0)
nconstwlpo.rp ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
nconstwlpo.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpo.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
Assertion
Ref Expression
nconstwlpolem (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐹   𝑦,𝐹   𝑖,𝐺,𝑦   𝜑,𝑥   𝜑,𝑦,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐹(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 fveq2 5558 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32neeq1d 2385 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
41, 3imbi12d 234 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((0 < 𝑥 → (𝐹𝑥) ≠ 0) ↔ (0 < 𝐴 → (𝐹𝐴) ≠ 0)))
5 elrp 9730 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6 nconstwlpo.rp . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
75, 6sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝐹𝑥) ≠ 0)
87expr 375 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) ≠ 0))
98ralrimiva 2570 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) ≠ 0))
10 nconstwlpo.g . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶{0, 1})
11 nconstwlpo.a . . . . . . . . . . . 12 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
1210, 11trilpolemcl 15681 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
134, 9, 12rspcdva 2873 . . . . . . . . . 10 (𝜑 → (0 < 𝐴 → (𝐹𝐴) ≠ 0))
1413necon2bd 2425 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 0 → ¬ 0 < 𝐴))
1514imp 124 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ 0 < 𝐴)
1610adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 𝐺:ℕ⟶{0, 1})
17 simpr 110 . . . . . . . . . . . . 13 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
18 fveqeq2 5567 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐺𝑦) = 1 ↔ (𝐺𝑎) = 1))
1918cbvrexv 2730 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 ↔ ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2017, 19sylib 122 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2116, 11, 20nconstwlpolemgt0 15708 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 0 < 𝐴)
2221ex 115 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 → 0 < 𝐴))
2322con3d 632 . . . . . . . . 9 (𝜑 → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2423adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2515, 24mpd 13 . . . . . . 7 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
26 ralnex 2485 . . . . . . 7 (∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1 ↔ ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
2725, 26sylibr 134 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1)
2827r19.21bi 2585 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ¬ (𝐺𝑦) = 1)
2910ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
30 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3129, 30ffvelcdmd 5698 . . . . . 6 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) ∈ {0, 1})
32 elpri 3645 . . . . . 6 ((𝐺𝑦) ∈ {0, 1} → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3331, 32syl 14 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3428, 33ecased 1360 . . . 4 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) = 0)
3534ralrimiva 2570 . . 3 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3635orcd 734 . 2 ((𝜑 ∧ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
3710adantr 276 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐺:ℕ⟶{0, 1})
38 simpr 110 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3937, 11, 38nconstwlpolem0 15707 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐴 = 0)
4039fveq2d 5562 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = (𝐹‘0))
41 nconstwlpo.0 . . . . . . . 8 (𝜑 → (𝐹‘0) = 0)
4241adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹‘0) = 0)
4340, 42eqtrd 2229 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = 0)
4443ex 115 . . . . 5 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 → (𝐹𝐴) = 0))
4544con3d 632 . . . 4 (𝜑 → (¬ (𝐹𝐴) = 0 → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
4645imp 124 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
4746olcd 735 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
48 nconstwlpo.f . . . . 5 (𝜑𝐹:ℝ⟶ℤ)
4948, 12ffvelcdmd 5698 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℤ)
50 0z 9337 . . . 4 0 ∈ ℤ
51 zdceq 9401 . . . 4 (((𝐹𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐹𝐴) = 0)
5249, 50, 51sylancl 413 . . 3 (𝜑DECID (𝐹𝐴) = 0)
53 exmiddc 837 . . 3 (DECID (𝐹𝐴) = 0 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5452, 53syl 14 . 2 (𝜑 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5536, 47, 54mpjaodan 799 1 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {cpr 3623   class class class wbr 4033  wf 5254  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   · cmul 7884   < clt 8061   / cdiv 8699  cn 8990  2c2 9041  cz 9326  +crp 9728  cexp 10630  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  nconstwlpo  15710
  Copyright terms: Public domain W3C validator