Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem GIF version

Theorem nconstwlpolem 15796
Description: Lemma for nconstwlpo 15797. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f (𝜑𝐹:ℝ⟶ℤ)
nconstwlpo.0 (𝜑 → (𝐹‘0) = 0)
nconstwlpo.rp ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
nconstwlpo.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpo.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
Assertion
Ref Expression
nconstwlpolem (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐹   𝑦,𝐹   𝑖,𝐺,𝑦   𝜑,𝑥   𝜑,𝑦,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐹(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4038 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 fveq2 5561 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32neeq1d 2385 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
41, 3imbi12d 234 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((0 < 𝑥 → (𝐹𝑥) ≠ 0) ↔ (0 < 𝐴 → (𝐹𝐴) ≠ 0)))
5 elrp 9747 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6 nconstwlpo.rp . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
75, 6sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝐹𝑥) ≠ 0)
87expr 375 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) ≠ 0))
98ralrimiva 2570 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) ≠ 0))
10 nconstwlpo.g . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶{0, 1})
11 nconstwlpo.a . . . . . . . . . . . 12 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
1210, 11trilpolemcl 15768 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
134, 9, 12rspcdva 2873 . . . . . . . . . 10 (𝜑 → (0 < 𝐴 → (𝐹𝐴) ≠ 0))
1413necon2bd 2425 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 0 → ¬ 0 < 𝐴))
1514imp 124 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ 0 < 𝐴)
1610adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 𝐺:ℕ⟶{0, 1})
17 simpr 110 . . . . . . . . . . . . 13 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
18 fveqeq2 5570 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐺𝑦) = 1 ↔ (𝐺𝑎) = 1))
1918cbvrexv 2730 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 ↔ ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2017, 19sylib 122 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2116, 11, 20nconstwlpolemgt0 15795 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 0 < 𝐴)
2221ex 115 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 → 0 < 𝐴))
2322con3d 632 . . . . . . . . 9 (𝜑 → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2423adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2515, 24mpd 13 . . . . . . 7 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
26 ralnex 2485 . . . . . . 7 (∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1 ↔ ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
2725, 26sylibr 134 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1)
2827r19.21bi 2585 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ¬ (𝐺𝑦) = 1)
2910ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
30 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3129, 30ffvelcdmd 5701 . . . . . 6 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) ∈ {0, 1})
32 elpri 3646 . . . . . 6 ((𝐺𝑦) ∈ {0, 1} → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3331, 32syl 14 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3428, 33ecased 1360 . . . 4 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) = 0)
3534ralrimiva 2570 . . 3 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3635orcd 734 . 2 ((𝜑 ∧ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
3710adantr 276 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐺:ℕ⟶{0, 1})
38 simpr 110 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3937, 11, 38nconstwlpolem0 15794 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐴 = 0)
4039fveq2d 5565 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = (𝐹‘0))
41 nconstwlpo.0 . . . . . . . 8 (𝜑 → (𝐹‘0) = 0)
4241adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹‘0) = 0)
4340, 42eqtrd 2229 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = 0)
4443ex 115 . . . . 5 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 → (𝐹𝐴) = 0))
4544con3d 632 . . . 4 (𝜑 → (¬ (𝐹𝐴) = 0 → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
4645imp 124 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
4746olcd 735 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
48 nconstwlpo.f . . . . 5 (𝜑𝐹:ℝ⟶ℤ)
4948, 12ffvelcdmd 5701 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℤ)
50 0z 9354 . . . 4 0 ∈ ℤ
51 zdceq 9418 . . . 4 (((𝐹𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐹𝐴) = 0)
5249, 50, 51sylancl 413 . . 3 (𝜑DECID (𝐹𝐴) = 0)
53 exmiddc 837 . . 3 (DECID (𝐹𝐴) = 0 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5452, 53syl 14 . 2 (𝜑 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5536, 47, 54mpjaodan 799 1 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {cpr 3624   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  cr 7895  0cc0 7896  1c1 7897   · cmul 7901   < clt 8078   / cdiv 8716  cn 9007  2c2 9058  cz 9343  +crp 9745  cexp 10647  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  nconstwlpo  15797
  Copyright terms: Public domain W3C validator