Step | Hyp | Ref
| Expression |
1 | | breq2 3969 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) |
2 | | fveq2 5465 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
3 | 2 | neeq1d 2345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ≠ 0 ↔ (𝐹‘𝐴) ≠ 0)) |
4 | 1, 3 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → (𝐹‘𝑥) ≠ 0) ↔ (0 < 𝐴 → (𝐹‘𝐴) ≠ 0))) |
5 | | elrp 9544 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
↔ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
6 | | nconstwlpo.rp |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
7 | 5, 6 | sylan2br 286 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝐹‘𝑥) ≠ 0) |
8 | 7 | expr 373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹‘𝑥) ≠ 0)) |
9 | 8 | ralrimiva 2530 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) ≠ 0)) |
10 | | nconstwlpo.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
11 | | nconstwlpo.a |
. . . . . . . . . . . 12
⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
12 | 10, 11 | trilpolemcl 13570 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | 4, 9, 12 | rspcdva 2821 |
. . . . . . . . . 10
⊢ (𝜑 → (0 < 𝐴 → (𝐹‘𝐴) ≠ 0)) |
14 | 13 | necon2bd 2385 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝐴) = 0 → ¬ 0 < 𝐴)) |
15 | 14 | imp 123 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → ¬ 0 < 𝐴) |
16 | 10 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) → 𝐺:ℕ⟶{0, 1}) |
17 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) → ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) |
18 | | fveqeq2 5474 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((𝐺‘𝑦) = 1 ↔ (𝐺‘𝑎) = 1)) |
19 | 18 | cbvrexv 2681 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
ℕ (𝐺‘𝑦) = 1 ↔ ∃𝑎 ∈ ℕ (𝐺‘𝑎) = 1) |
20 | 17, 19 | sylib 121 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) → ∃𝑎 ∈ ℕ (𝐺‘𝑎) = 1) |
21 | 16, 11, 20 | nconstwlpolemgt0 13596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) → 0 < 𝐴) |
22 | 21 | ex 114 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1 → 0 < 𝐴)) |
23 | 22 | con3d 621 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1)) |
24 | 23 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1)) |
25 | 15, 24 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → ¬ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) |
26 | | ralnex 2445 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℕ ¬ (𝐺‘𝑦) = 1 ↔ ¬ ∃𝑦 ∈ ℕ (𝐺‘𝑦) = 1) |
27 | 25, 26 | sylibr 133 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → ∀𝑦 ∈ ℕ ¬ (𝐺‘𝑦) = 1) |
28 | 27 | r19.21bi 2545 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ¬ (𝐺‘𝑦) = 1) |
29 | 10 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝐺:ℕ⟶{0, 1}) |
30 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) |
31 | 29, 30 | ffvelrnd 5600 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺‘𝑦) ∈ {0, 1}) |
32 | | elpri 3583 |
. . . . . 6
⊢ ((𝐺‘𝑦) ∈ {0, 1} → ((𝐺‘𝑦) = 0 ∨ (𝐺‘𝑦) = 1)) |
33 | 31, 32 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ((𝐺‘𝑦) = 0 ∨ (𝐺‘𝑦) = 1)) |
34 | 28, 33 | ecased 1331 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺‘𝑦) = 0) |
35 | 34 | ralrimiva 2530 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) |
36 | 35 | orcd 723 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) |
37 | 10 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → 𝐺:ℕ⟶{0, 1}) |
38 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) |
39 | 37, 11, 38 | nconstwlpolem0 13595 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → 𝐴 = 0) |
40 | 39 | fveq2d 5469 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → (𝐹‘𝐴) = (𝐹‘0)) |
41 | | nconstwlpo.0 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) = 0) |
42 | 41 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → (𝐹‘0) = 0) |
43 | 40, 42 | eqtrd 2190 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) → (𝐹‘𝐴) = 0) |
44 | 43 | ex 114 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 → (𝐹‘𝐴) = 0)) |
45 | 44 | con3d 621 |
. . . 4
⊢ (𝜑 → (¬ (𝐹‘𝐴) = 0 → ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) |
46 | 45 | imp 123 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = 0) → ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0) |
47 | 46 | olcd 724 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) |
48 | | nconstwlpo.f |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℤ) |
49 | 48, 12 | ffvelrnd 5600 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℤ) |
50 | | 0z 9161 |
. . . 4
⊢ 0 ∈
ℤ |
51 | | zdceq 9222 |
. . . 4
⊢ (((𝐹‘𝐴) ∈ ℤ ∧ 0 ∈ ℤ)
→ DECID (𝐹‘𝐴) = 0) |
52 | 49, 50, 51 | sylancl 410 |
. . 3
⊢ (𝜑 → DECID
(𝐹‘𝐴) = 0) |
53 | | exmiddc 822 |
. . 3
⊢
(DECID (𝐹‘𝐴) = 0 → ((𝐹‘𝐴) = 0 ∨ ¬ (𝐹‘𝐴) = 0)) |
54 | 52, 53 | syl 14 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴) = 0 ∨ ¬ (𝐹‘𝐴) = 0)) |
55 | 36, 47, 54 | mpjaodan 788 |
1
⊢ (𝜑 → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) |