Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem GIF version

Theorem nconstwlpolem 15555
Description: Lemma for nconstwlpo 15556. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f (𝜑𝐹:ℝ⟶ℤ)
nconstwlpo.0 (𝜑 → (𝐹‘0) = 0)
nconstwlpo.rp ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
nconstwlpo.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpo.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
Assertion
Ref Expression
nconstwlpolem (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐹   𝑦,𝐹   𝑖,𝐺,𝑦   𝜑,𝑥   𝜑,𝑦,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐹(𝑖)   𝐺(𝑥)

Proof of Theorem nconstwlpolem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4033 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 fveq2 5554 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32neeq1d 2382 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ((𝐹𝑥) ≠ 0 ↔ (𝐹𝐴) ≠ 0))
41, 3imbi12d 234 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((0 < 𝑥 → (𝐹𝑥) ≠ 0) ↔ (0 < 𝐴 → (𝐹𝐴) ≠ 0)))
5 elrp 9721 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6 nconstwlpo.rp . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ≠ 0)
75, 6sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝐹𝑥) ≠ 0)
87expr 375 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (0 < 𝑥 → (𝐹𝑥) ≠ 0))
98ralrimiva 2567 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) ≠ 0))
10 nconstwlpo.g . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶{0, 1})
11 nconstwlpo.a . . . . . . . . . . . 12 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
1210, 11trilpolemcl 15527 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
134, 9, 12rspcdva 2869 . . . . . . . . . 10 (𝜑 → (0 < 𝐴 → (𝐹𝐴) ≠ 0))
1413necon2bd 2422 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 0 → ¬ 0 < 𝐴))
1514imp 124 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ 0 < 𝐴)
1610adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 𝐺:ℕ⟶{0, 1})
17 simpr 110 . . . . . . . . . . . . 13 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
18 fveqeq2 5563 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐺𝑦) = 1 ↔ (𝐺𝑎) = 1))
1918cbvrexv 2727 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 ↔ ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2017, 19sylib 122 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → ∃𝑎 ∈ ℕ (𝐺𝑎) = 1)
2116, 11, 20nconstwlpolemgt0 15554 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1) → 0 < 𝐴)
2221ex 115 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℕ (𝐺𝑦) = 1 → 0 < 𝐴))
2322con3d 632 . . . . . . . . 9 (𝜑 → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2423adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐴) = 0) → (¬ 0 < 𝐴 → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1))
2515, 24mpd 13 . . . . . . 7 ((𝜑 ∧ (𝐹𝐴) = 0) → ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
26 ralnex 2482 . . . . . . 7 (∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1 ↔ ¬ ∃𝑦 ∈ ℕ (𝐺𝑦) = 1)
2725, 26sylibr 134 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ ¬ (𝐺𝑦) = 1)
2827r19.21bi 2582 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ¬ (𝐺𝑦) = 1)
2910ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝐺:ℕ⟶{0, 1})
30 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3129, 30ffvelcdmd 5694 . . . . . 6 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) ∈ {0, 1})
32 elpri 3641 . . . . . 6 ((𝐺𝑦) ∈ {0, 1} → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3331, 32syl 14 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → ((𝐺𝑦) = 0 ∨ (𝐺𝑦) = 1))
3428, 33ecased 1360 . . . 4 (((𝜑 ∧ (𝐹𝐴) = 0) ∧ 𝑦 ∈ ℕ) → (𝐺𝑦) = 0)
3534ralrimiva 2567 . . 3 ((𝜑 ∧ (𝐹𝐴) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3635orcd 734 . 2 ((𝜑 ∧ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
3710adantr 276 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐺:ℕ⟶{0, 1})
38 simpr 110 . . . . . . . . 9 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
3937, 11, 38nconstwlpolem0 15553 . . . . . . . 8 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → 𝐴 = 0)
4039fveq2d 5558 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = (𝐹‘0))
41 nconstwlpo.0 . . . . . . . 8 (𝜑 → (𝐹‘0) = 0)
4241adantr 276 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹‘0) = 0)
4340, 42eqtrd 2226 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0) → (𝐹𝐴) = 0)
4443ex 115 . . . . 5 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 → (𝐹𝐴) = 0))
4544con3d 632 . . . 4 (𝜑 → (¬ (𝐹𝐴) = 0 → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
4645imp 124 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0)
4746olcd 735 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = 0) → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
48 nconstwlpo.f . . . . 5 (𝜑𝐹:ℝ⟶ℤ)
4948, 12ffvelcdmd 5694 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℤ)
50 0z 9328 . . . 4 0 ∈ ℤ
51 zdceq 9392 . . . 4 (((𝐹𝐴) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝐹𝐴) = 0)
5249, 50, 51sylancl 413 . . 3 (𝜑DECID (𝐹𝐴) = 0)
53 exmiddc 837 . . 3 (DECID (𝐹𝐴) = 0 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5452, 53syl 14 . 2 (𝜑 → ((𝐹𝐴) = 0 ∨ ¬ (𝐹𝐴) = 0))
5536, 47, 54mpjaodan 799 1 (𝜑 → (∀𝑦 ∈ ℕ (𝐺𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺𝑦) = 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {cpr 3619   class class class wbr 4029  wf 5250  cfv 5254  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   · cmul 7877   < clt 8054   / cdiv 8691  cn 8982  2c2 9033  cz 9317  +crp 9719  cexp 10609  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  nconstwlpo  15556
  Copyright terms: Public domain W3C validator