ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfphi2 GIF version

Theorem dfphi2 11807
Description: Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 9357 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 phi1 11806 . . . . 5 (ϕ‘1) = 1
3 0z 9023 . . . . . 6 0 ∈ ℤ
4 hashsng 10499 . . . . . 6 (0 ∈ ℤ → (♯‘{0}) = 1)
53, 4ax-mp 5 . . . . 5 (♯‘{0}) = 1
6 rabid2 2584 . . . . . . 7 ({0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1} ↔ ∀𝑥 ∈ {0} (𝑥 gcd 1) = 1)
7 elsni 3515 . . . . . . . . 9 (𝑥 ∈ {0} → 𝑥 = 0)
87oveq1d 5757 . . . . . . . 8 (𝑥 ∈ {0} → (𝑥 gcd 1) = (0 gcd 1))
9 gcd1 11587 . . . . . . . . 9 (0 ∈ ℤ → (0 gcd 1) = 1)
103, 9ax-mp 5 . . . . . . . 8 (0 gcd 1) = 1
118, 10syl6eq 2166 . . . . . . 7 (𝑥 ∈ {0} → (𝑥 gcd 1) = 1)
126, 11mprgbir 2467 . . . . . 6 {0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}
1312fveq2i 5392 . . . . 5 (♯‘{0}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
142, 5, 133eqtr2i 2144 . . . 4 (ϕ‘1) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
15 fveq2 5389 . . . 4 (𝑁 = 1 → (ϕ‘𝑁) = (ϕ‘1))
16 oveq2 5750 . . . . . . 7 (𝑁 = 1 → (0..^𝑁) = (0..^1))
17 fzo01 9948 . . . . . . 7 (0..^1) = {0}
1816, 17syl6eq 2166 . . . . . 6 (𝑁 = 1 → (0..^𝑁) = {0})
19 oveq2 5750 . . . . . . 7 (𝑁 = 1 → (𝑥 gcd 𝑁) = (𝑥 gcd 1))
2019eqeq1d 2126 . . . . . 6 (𝑁 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (𝑥 gcd 1) = 1))
2118, 20rabeqbidv 2655 . . . . 5 (𝑁 = 1 → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
2221fveq2d 5393 . . . 4 (𝑁 = 1 → (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}))
2314, 15, 223eqtr4a 2176 . . 3 (𝑁 = 1 → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
24 eluz2nn 9320 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
25 phival 11800 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2624, 25syl 14 . . . 4 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
27 fzossfz 9897 . . . . . . . . . . 11 (1..^𝑁) ⊆ (1...𝑁)
2827a1i 9 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) ⊆ (1...𝑁))
29 sseqin2 3265 . . . . . . . . . 10 ((1..^𝑁) ⊆ (1...𝑁) ↔ ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3028, 29sylib 121 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
31 fzo0ss1 9906 . . . . . . . . . 10 (1..^𝑁) ⊆ (0..^𝑁)
32 sseqin2 3265 . . . . . . . . . 10 ((1..^𝑁) ⊆ (0..^𝑁) ↔ ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3331, 32mpbi 144 . . . . . . . . 9 ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁)
3430, 33syl6eqr 2168 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = ((0..^𝑁) ∩ (1..^𝑁)))
3534rabeqdv 2654 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1})
36 inrab2 3319 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
37 inrab2 3319 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
3835, 36, 373eqtr4g 2175 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)))
39 phibndlem 11803 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
40 eluzelz 9291 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
41 fzoval 9880 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
4240, 41syl 14 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) = (1...(𝑁 − 1)))
4339, 42sseqtrrd 3106 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
44 df-ss 3054 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
4543, 44sylib 121 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
46 gcd0id 11579 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
4740, 46syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = (abs‘𝑁))
48 eluzelre 9292 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
49 eluzge2nn0 9321 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
5049nn0ge0d 8991 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 0 ≤ 𝑁)
5148, 50absidd 10894 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
5247, 51eqtrd 2150 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = 𝑁)
53 eluz2b3 9354 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
5453simprbi 273 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
5552, 54eqnetrd 2309 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) ≠ 1)
5655adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (0 gcd 𝑁) ≠ 1)
577oveq1d 5757 . . . . . . . . . . . . . 14 (𝑥 ∈ {0} → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5857, 17eleq2s 2212 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5958neeq1d 2303 . . . . . . . . . . . 12 (𝑥 ∈ (0..^1) → ((𝑥 gcd 𝑁) ≠ 1 ↔ (0 gcd 𝑁) ≠ 1))
6056, 59syl5ibrcom 156 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) ≠ 1))
6160necon2bd 2343 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → ¬ 𝑥 ∈ (0..^1)))
62 simpr 109 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
63 1z 9038 . . . . . . . . . . . 12 1 ∈ ℤ
64 fzospliti 9908 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^𝑁) ∧ 1 ∈ ℤ) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6562, 63, 64sylancl 409 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6665ord 698 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (¬ 𝑥 ∈ (0..^1) → 𝑥 ∈ (1..^𝑁)))
6761, 66syld 45 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
6867ralrimiva 2482 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
69 rabss 3144 . . . . . . . 8 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
7068, 69sylibr 133 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
71 df-ss 3054 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7270, 71sylib 121 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7338, 45, 723eqtr3d 2158 . . . . 5 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7473fveq2d 5393 . . . 4 (𝑁 ∈ (ℤ‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7526, 74eqtrd 2150 . . 3 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7623, 75jaoi 690 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
771, 76sylbi 120 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 682   = wceq 1316  wcel 1465  wne 2285  wral 2393  {crab 2397  cin 3040  wss 3041  {csn 3497  cfv 5093  (class class class)co 5742  0cc0 7588  1c1 7589  cmin 7901  cn 8684  2c2 8735  cz 9012  cuz 9282  ...cfz 9745  ..^cfzo 9874  chash 10476  abscabs 10724   gcd cgcd 11547  ϕcphi 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-stab 801  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-fz 9746  df-fzo 9875  df-fl 9998  df-mod 10051  df-seqfrec 10174  df-exp 10248  df-ihash 10477  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-dvds 11406  df-gcd 11548  df-phi 11798
This theorem is referenced by:  phimullem  11812  hashgcdeq  11815
  Copyright terms: Public domain W3C validator