ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo2 GIF version

Theorem zeo2 9435
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zeo2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo2
StepHypRef Expression
1 zcn 9334 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 peano2cn 8164 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 14 . . . . 5 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℂ)
4 2cnd 9066 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
5 2ap0 9086 . . . . . 6 2 # 0
65a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 # 0)
73, 4, 6divcanap2d 8822 . . . 4 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
81, 4, 6divcanap2d 8822 . . . . 5 (𝑁 ∈ ℤ → (2 · (𝑁 / 2)) = 𝑁)
98oveq1d 5938 . . . 4 (𝑁 ∈ ℤ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
107, 9eqtr4d 2232 . . 3 (𝑁 ∈ ℤ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
11 zneo 9430 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1211expcom 116 . . . 4 ((𝑁 / 2) ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1312necon2bd 2425 . . 3 ((𝑁 / 2) ∈ ℤ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
1410, 13syl5com 29 . 2 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
15 zeo 9434 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615orcomd 730 . . 3 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ∨ (𝑁 / 2) ∈ ℤ))
1716ord 725 . 2 (𝑁 ∈ ℤ → (¬ ((𝑁 + 1) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
1814, 17impbid 129 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  (class class class)co 5923  cc 7880  0cc0 7882  1c1 7883   + caddc 7885   · cmul 7887   # cap 8611   / cdiv 8702  2c2 9044  cz 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-n0 9253  df-z 9330
This theorem is referenced by:  zesq  10753  zeo3  12036
  Copyright terms: Public domain W3C validator