ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0g GIF version

Theorem map0g 6825
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Proof of Theorem map0g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fconst6g 5520 . . . . . . . 8 (𝑓𝐴 → (𝐵 × {𝑓}):𝐵𝐴)
2 elmapg 6798 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵𝐴))
31, 2imbitrrid 156 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐵 × {𝑓}) ∈ (𝐴𝑚 𝐵)))
4 ne0i 3498 . . . . . . 7 ((𝐵 × {𝑓}) ∈ (𝐴𝑚 𝐵) → (𝐴𝑚 𝐵) ≠ ∅)
53, 4syl6 33 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝑓𝐴 → (𝐴𝑚 𝐵) ≠ ∅))
65exlimdv 1865 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑓 𝑓𝐴 → (𝐴𝑚 𝐵) ≠ ∅))
76necon2bd 2458 . . . 4 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ → ¬ ∃𝑓 𝑓𝐴))
8 notm0 3512 . . . 4 (¬ ∃𝑓 𝑓𝐴𝐴 = ∅)
97, 8imbitrdi 161 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ → 𝐴 = ∅))
10 f0 5512 . . . . . . 7 ∅:∅⟶𝐴
11 feq2 5453 . . . . . . 7 (𝐵 = ∅ → (∅:𝐵𝐴 ↔ ∅:∅⟶𝐴))
1210, 11mpbiri 168 . . . . . 6 (𝐵 = ∅ → ∅:𝐵𝐴)
13 elmapg 6798 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∅ ∈ (𝐴𝑚 𝐵) ↔ ∅:𝐵𝐴))
1412, 13imbitrrid 156 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴𝑚 𝐵)))
15 ne0i 3498 . . . . 5 (∅ ∈ (𝐴𝑚 𝐵) → (𝐴𝑚 𝐵) ≠ ∅)
1614, 15syl6 33 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 = ∅ → (𝐴𝑚 𝐵) ≠ ∅))
1716necon2d 2459 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ → 𝐵 ≠ ∅))
189, 17jcad 307 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
19 oveq1 6001 . . 3 (𝐴 = ∅ → (𝐴𝑚 𝐵) = (∅ ↑𝑚 𝐵))
20 map0b 6824 . . 3 (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅)
2119, 20sylan9eq 2282 . 2 ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) = ∅)
2218, 21impbid1 142 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wne 2400  c0 3491  {csn 3666   × cxp 4714  wf 5310  (class class class)co 5994  𝑚 cmap 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-map 6787
This theorem is referenced by:  map0  6826
  Copyright terms: Public domain W3C validator