Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map0g | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5383 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
2 | elmapg 6621 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
3 | 1, 2 | syl5ibr 155 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵))) |
4 | ne0i 3413 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
6 | 5 | exlimdv 1806 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
7 | 6 | necon2bd 2392 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → ¬ ∃𝑓 𝑓 ∈ 𝐴)) |
8 | notm0 3427 | . . . 4 ⊢ (¬ ∃𝑓 𝑓 ∈ 𝐴 ↔ 𝐴 = ∅) | |
9 | 7, 8 | syl6ib 160 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐴 = ∅)) |
10 | f0 5375 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
11 | feq2 5318 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
12 | 10, 11 | mpbiri 167 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
13 | elmapg 6621 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑𝑚 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
14 | 12, 13 | syl5ibr 155 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑𝑚 𝐵))) |
15 | ne0i 3413 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
17 | 16 | necon2d 2393 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐵 ≠ ∅)) |
18 | 9, 17 | jcad 305 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
19 | oveq1 5846 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑚 𝐵) = (∅ ↑𝑚 𝐵)) | |
20 | map0b 6647 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅) | |
21 | 19, 20 | sylan9eq 2217 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑𝑚 𝐵) = ∅) |
22 | 18, 21 | impbid1 141 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1342 ∃wex 1479 ∈ wcel 2135 ≠ wne 2334 ∅c0 3407 {csn 3573 × cxp 4599 ⟶wf 5181 (class class class)co 5839 ↑𝑚 cmap 6608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-v 2726 df-sbc 2950 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-mpt 4042 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-map 6610 |
This theorem is referenced by: map0 6649 |
Copyright terms: Public domain | W3C validator |