Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map0g | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5386 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
2 | elmapg 6627 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
3 | 1, 2 | syl5ibr 155 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵))) |
4 | ne0i 3415 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
6 | 5 | exlimdv 1807 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
7 | 6 | necon2bd 2394 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → ¬ ∃𝑓 𝑓 ∈ 𝐴)) |
8 | notm0 3429 | . . . 4 ⊢ (¬ ∃𝑓 𝑓 ∈ 𝐴 ↔ 𝐴 = ∅) | |
9 | 7, 8 | syl6ib 160 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐴 = ∅)) |
10 | f0 5378 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
11 | feq2 5321 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
12 | 10, 11 | mpbiri 167 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
13 | elmapg 6627 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑𝑚 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
14 | 12, 13 | syl5ibr 155 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑𝑚 𝐵))) |
15 | ne0i 3415 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
17 | 16 | necon2d 2395 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐵 ≠ ∅)) |
18 | 9, 17 | jcad 305 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
19 | oveq1 5849 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑚 𝐵) = (∅ ↑𝑚 𝐵)) | |
20 | map0b 6653 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅) | |
21 | 19, 20 | sylan9eq 2219 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑𝑚 𝐵) = ∅) |
22 | 18, 21 | impbid1 141 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 {csn 3576 × cxp 4602 ⟶wf 5184 (class class class)co 5842 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: map0 6655 |
Copyright terms: Public domain | W3C validator |