| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > map0g | GIF version | ||
| Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst6g 5520 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
| 2 | elmapg 6798 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
| 3 | 1, 2 | imbitrrid 156 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵))) |
| 4 | ne0i 3498 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
| 5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
| 6 | 5 | exlimdv 1865 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
| 7 | 6 | necon2bd 2458 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → ¬ ∃𝑓 𝑓 ∈ 𝐴)) |
| 8 | notm0 3512 | . . . 4 ⊢ (¬ ∃𝑓 𝑓 ∈ 𝐴 ↔ 𝐴 = ∅) | |
| 9 | 7, 8 | imbitrdi 161 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐴 = ∅)) |
| 10 | f0 5512 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
| 11 | feq2 5453 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
| 12 | 10, 11 | mpbiri 168 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
| 13 | elmapg 6798 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑𝑚 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
| 14 | 12, 13 | imbitrrid 156 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑𝑚 𝐵))) |
| 15 | ne0i 3498 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
| 16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
| 17 | 16 | necon2d 2459 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐵 ≠ ∅)) |
| 18 | 9, 17 | jcad 307 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| 19 | oveq1 6001 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑚 𝐵) = (∅ ↑𝑚 𝐵)) | |
| 20 | map0b 6824 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅) | |
| 21 | 19, 20 | sylan9eq 2282 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑𝑚 𝐵) = ∅) |
| 22 | 18, 21 | impbid1 142 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 {csn 3666 × cxp 4714 ⟶wf 5310 (class class class)co 5994 ↑𝑚 cmap 6785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-map 6787 |
| This theorem is referenced by: map0 6826 |
| Copyright terms: Public domain | W3C validator |