![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map0g | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
map0g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5416 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}):𝐵⟶𝐴) | |
2 | elmapg 6663 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) ↔ (𝐵 × {𝑓}):𝐵⟶𝐴)) | |
3 | 1, 2 | imbitrrid 156 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵))) |
4 | ne0i 3431 | . . . . . . 7 ⊢ ((𝐵 × {𝑓}) ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
5 | 3, 4 | syl6 33 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
6 | 5 | exlimdv 1819 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑓 𝑓 ∈ 𝐴 → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
7 | 6 | necon2bd 2405 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → ¬ ∃𝑓 𝑓 ∈ 𝐴)) |
8 | notm0 3445 | . . . 4 ⊢ (¬ ∃𝑓 𝑓 ∈ 𝐴 ↔ 𝐴 = ∅) | |
9 | 7, 8 | imbitrdi 161 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐴 = ∅)) |
10 | f0 5408 | . . . . . . 7 ⊢ ∅:∅⟶𝐴 | |
11 | feq2 5351 | . . . . . . 7 ⊢ (𝐵 = ∅ → (∅:𝐵⟶𝐴 ↔ ∅:∅⟶𝐴)) | |
12 | 10, 11 | mpbiri 168 | . . . . . 6 ⊢ (𝐵 = ∅ → ∅:𝐵⟶𝐴) |
13 | elmapg 6663 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∅ ∈ (𝐴 ↑𝑚 𝐵) ↔ ∅:𝐵⟶𝐴)) | |
14 | 12, 13 | imbitrrid 156 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → ∅ ∈ (𝐴 ↑𝑚 𝐵))) |
15 | ne0i 3431 | . . . . 5 ⊢ (∅ ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ↑𝑚 𝐵) ≠ ∅) | |
16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 = ∅ → (𝐴 ↑𝑚 𝐵) ≠ ∅)) |
17 | 16 | necon2d 2406 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → 𝐵 ≠ ∅)) |
18 | 9, 17 | jcad 307 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
19 | oveq1 5884 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ↑𝑚 𝐵) = (∅ ↑𝑚 𝐵)) | |
20 | map0b 6689 | . . 3 ⊢ (𝐵 ≠ ∅ → (∅ ↑𝑚 𝐵) = ∅) | |
21 | 19, 20 | sylan9eq 2230 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 ≠ ∅) → (𝐴 ↑𝑚 𝐵) = ∅) |
22 | 18, 21 | impbid1 142 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ≠ wne 2347 ∅c0 3424 {csn 3594 × cxp 4626 ⟶wf 5214 (class class class)co 5877 ↑𝑚 cmap 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-map 6652 |
This theorem is referenced by: map0 6691 |
Copyright terms: Public domain | W3C validator |