ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneo GIF version

Theorem nneo 9496
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
nneo (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneo
StepHypRef Expression
1 nncn 9064 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 peano2cn 8227 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 14 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
4 2cnd 9129 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5 2ap0 9149 . . . . . 6 2 # 0
65a1i 9 . . . . 5 (𝑁 ∈ ℕ → 2 # 0)
73, 4, 6divcanap2d 8885 . . . 4 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
81, 4, 6divcanap2d 8885 . . . . 5 (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁)
98oveq1d 5972 . . . 4 (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
107, 9eqtr4d 2242 . . 3 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
11 nnz 9411 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
12 nnz 9411 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
13 zneo 9494 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1411, 12, 13syl2an 289 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1514expcom 116 . . . 4 ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1615necon2bd 2435 . . 3 ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1710, 16syl5com 29 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
18 nneoor 9495 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
1918orcomd 731 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
2019ord 726 . 2 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
2117, 20impbid 129 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4051  (class class class)co 5957  cc 7943  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950   # cap 8674   / cdiv 8765  cn 9056  2c2 9107  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393
This theorem is referenced by:  nneoi  9497
  Copyright terms: Public domain W3C validator