ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneo GIF version

Theorem nneo 9359
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
nneo (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneo
StepHypRef Expression
1 nncn 8930 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 peano2cn 8095 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
31, 2syl 14 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
4 2cnd 8995 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5 2ap0 9015 . . . . . 6 2 # 0
65a1i 9 . . . . 5 (𝑁 ∈ ℕ → 2 # 0)
73, 4, 6divcanap2d 8752 . . . 4 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
81, 4, 6divcanap2d 8752 . . . . 5 (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁)
98oveq1d 5893 . . . 4 (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
107, 9eqtr4d 2213 . . 3 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
11 nnz 9275 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
12 nnz 9275 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
13 zneo 9357 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1411, 12, 13syl2an 289 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1514expcom 116 . . . 4 ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1615necon2bd 2405 . . 3 ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1710, 16syl5com 29 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
18 nneoor 9358 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
1918orcomd 729 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
2019ord 724 . 2 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
2117, 20impbid 129 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4005  (class class class)co 5878  cc 7812  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819   # cap 8541   / cdiv 8632  cn 8922  2c2 8973  cz 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-n0 9180  df-z 9257
This theorem is referenced by:  nneoi  9360
  Copyright terms: Public domain W3C validator