![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nneo | GIF version |
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
Ref | Expression |
---|---|
nneo | ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 8420 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | peano2cn 7607 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ) |
4 | 2cnd 8485 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
5 | 2ap0 8505 | . . . . . 6 ⊢ 2 # 0 | |
6 | 5 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 # 0) |
7 | 3, 4, 6 | divcanap2d 8249 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1)) |
8 | 1, 4, 6 | divcanap2d 8249 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁) |
9 | 8 | oveq1d 5659 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1)) |
10 | 7, 9 | eqtr4d 2123 | . . 3 ⊢ (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1)) |
11 | nnz 8759 | . . . . . 6 ⊢ (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ) | |
12 | nnz 8759 | . . . . . 6 ⊢ ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ) | |
13 | zneo 8837 | . . . . . 6 ⊢ ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)) | |
14 | 11, 12, 13 | syl2an 283 | . . . . 5 ⊢ ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)) |
15 | 14 | expcom 114 | . . . 4 ⊢ ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))) |
16 | 15 | necon2bd 2313 | . . 3 ⊢ ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ)) |
17 | 10, 16 | syl5com 29 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ)) |
18 | nneoor 8838 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ)) | |
19 | 18 | orcomd 683 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)) |
20 | 19 | ord 678 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ)) |
21 | 17, 20 | impbid 127 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 class class class wbr 3843 (class class class)co 5644 ℂcc 7338 0cc0 7340 1c1 7341 + caddc 7343 · cmul 7345 # cap 8048 / cdiv 8129 ℕcn 8412 2c2 8463 ℤcz 8740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-un 4258 ax-setind 4351 ax-cnex 7426 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-mulrcl 7434 ax-addcom 7435 ax-mulcom 7436 ax-addass 7437 ax-mulass 7438 ax-distr 7439 ax-i2m1 7440 ax-0lt1 7441 ax-1rid 7442 ax-0id 7443 ax-rnegex 7444 ax-precex 7445 ax-cnre 7446 ax-pre-ltirr 7447 ax-pre-ltwlin 7448 ax-pre-lttrn 7449 ax-pre-apti 7450 ax-pre-ltadd 7451 ax-pre-mulgt0 7452 ax-pre-mulext 7453 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-int 3687 df-br 3844 df-opab 3898 df-id 4118 df-po 4121 df-iso 4122 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-iota 4975 df-fun 5012 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-pnf 7514 df-mnf 7515 df-xr 7516 df-ltxr 7517 df-le 7518 df-sub 7645 df-neg 7646 df-reap 8042 df-ap 8049 df-div 8130 df-inn 8413 df-2 8471 df-n0 8664 df-z 8741 |
This theorem is referenced by: nneoi 8840 |
Copyright terms: Public domain | W3C validator |