ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutr1 GIF version

Theorem bezoutr1 12017
Description: Converse of bezout 11995 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 12016 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
21adantr 276 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
3 simpr 110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1)
42, 3breqtrd 4026 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ 1)
5 gcdcl 11950 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
65nn0zd 9362 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
76ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℤ)
8 1nn 8919 . . . . . 6 1 ∈ ℕ
98a1i 9 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → 1 ∈ ℕ)
10 dvdsle 11833 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
117, 9, 10syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
124, 11mpd 13 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ≤ 1)
13 simpll 527 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
14 oveq1 5876 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
15 oveq1 5876 . . . . . . . . . . . . 13 (𝐵 = 0 → (𝐵 · 𝑌) = (0 · 𝑌))
1614, 15oveqan12d 5888 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (0 · 𝑌)))
17 zcn 9247 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
1817mul02d 8339 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (0 · 𝑋) = 0)
19 zcn 9247 . . . . . . . . . . . . . 14 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
2019mul02d 8339 . . . . . . . . . . . . 13 (𝑌 ∈ ℤ → (0 · 𝑌) = 0)
2118, 20oveqan12d 5888 . . . . . . . . . . . 12 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((0 · 𝑋) + (0 · 𝑌)) = (0 + 0))
2216, 21sylan9eqr 2232 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = (0 + 0))
23 00id 8088 . . . . . . . . . . 11 (0 + 0) = 0
2422, 23eqtrdi 2226 . . . . . . . . . 10 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
2524adantll 476 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
26 0ne1 8975 . . . . . . . . . 10 0 ≠ 1
2726a1i 9 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → 0 ≠ 1)
2825, 27eqnetrd 2371 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1)
2928ex 115 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1))
3029necon2bd 2405 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3130imp 124 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
32 gcdn0cl 11946 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
3313, 31, 32syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℕ)
34 nnle1eq1 8932 . . . 4 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3533, 34syl 14 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3612, 35mpbid 147 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) = 1)
3736ex 115 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  (class class class)co 5869  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cle 7983  cn 8908  cz 9242  cdvds 11778   gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  divgcdcoprm0  12084
  Copyright terms: Public domain W3C validator