Proof of Theorem bezoutr1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | bezoutr 12199 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) | 
| 2 | 1 | adantr 276 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) | 
| 3 |   | simpr 110 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) | 
| 4 | 2, 3 | breqtrd 4059 | 
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ 1) | 
| 5 |   | gcdcl 12133 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈
ℕ0) | 
| 6 | 5 | nn0zd 9446 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ) | 
| 7 | 6 | ad2antrr 488 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℤ) | 
| 8 |   | 1nn 9001 | 
. . . . . 6
⊢ 1 ∈
ℕ | 
| 9 | 8 | a1i 9 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → 1 ∈
ℕ) | 
| 10 |   | dvdsle 12009 | 
. . . . 5
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℕ)
→ ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1)) | 
| 11 | 7, 9, 10 | syl2anc 411 | 
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1)) | 
| 12 | 4, 11 | mpd 13 | 
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ≤ 1) | 
| 13 |   | simpll 527 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) | 
| 14 |   | oveq1 5929 | 
. . . . . . . . . . . . 13
⊢ (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋)) | 
| 15 |   | oveq1 5929 | 
. . . . . . . . . . . . 13
⊢ (𝐵 = 0 → (𝐵 · 𝑌) = (0 · 𝑌)) | 
| 16 | 14, 15 | oveqan12d 5941 | 
. . . . . . . . . . . 12
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (0 · 𝑌))) | 
| 17 |   | zcn 9331 | 
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℤ → 𝑋 ∈
ℂ) | 
| 18 | 17 | mul02d 8418 | 
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℤ → (0
· 𝑋) =
0) | 
| 19 |   | zcn 9331 | 
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ ℤ → 𝑌 ∈
ℂ) | 
| 20 | 19 | mul02d 8418 | 
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ ℤ → (0
· 𝑌) =
0) | 
| 21 | 18, 20 | oveqan12d 5941 | 
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((0
· 𝑋) + (0 ·
𝑌)) = (0 +
0)) | 
| 22 | 16, 21 | sylan9eqr 2251 | 
. . . . . . . . . . 11
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = (0 + 0)) | 
| 23 |   | 00id 8167 | 
. . . . . . . . . . 11
⊢ (0 + 0) =
0 | 
| 24 | 22, 23 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0) | 
| 25 | 24 | adantll 476 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0) | 
| 26 |   | 0ne1 9057 | 
. . . . . . . . . 10
⊢ 0 ≠
1 | 
| 27 | 26 | a1i 9 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → 0 ≠ 1) | 
| 28 | 25, 27 | eqnetrd 2391 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1) | 
| 29 | 28 | ex 115 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1)) | 
| 30 | 29 | necon2bd 2425 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) →
(((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))) | 
| 31 | 30 | imp 124 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 32 |   | gcdn0cl 12129 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 33 | 13, 31, 32 | syl2anc 411 | 
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 34 |   | nnle1eq1 9014 | 
. . . 4
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1)) | 
| 35 | 33, 34 | syl 14 | 
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1)) | 
| 36 | 12, 35 | mpbid 147 | 
. 2
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) = 1) | 
| 37 | 36 | ex 115 | 
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) →
(((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1)) |