ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutr1 GIF version

Theorem bezoutr1 12554
Description: Converse of bezout 12532 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 12553 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
21adantr 276 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
3 simpr 110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1)
42, 3breqtrd 4109 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ 1)
5 gcdcl 12487 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
65nn0zd 9567 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
76ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℤ)
8 1nn 9121 . . . . . 6 1 ∈ ℕ
98a1i 9 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → 1 ∈ ℕ)
10 dvdsle 12355 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
117, 9, 10syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
124, 11mpd 13 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ≤ 1)
13 simpll 527 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
14 oveq1 6008 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
15 oveq1 6008 . . . . . . . . . . . . 13 (𝐵 = 0 → (𝐵 · 𝑌) = (0 · 𝑌))
1614, 15oveqan12d 6020 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (0 · 𝑌)))
17 zcn 9451 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
1817mul02d 8538 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (0 · 𝑋) = 0)
19 zcn 9451 . . . . . . . . . . . . . 14 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
2019mul02d 8538 . . . . . . . . . . . . 13 (𝑌 ∈ ℤ → (0 · 𝑌) = 0)
2118, 20oveqan12d 6020 . . . . . . . . . . . 12 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((0 · 𝑋) + (0 · 𝑌)) = (0 + 0))
2216, 21sylan9eqr 2284 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = (0 + 0))
23 00id 8287 . . . . . . . . . . 11 (0 + 0) = 0
2422, 23eqtrdi 2278 . . . . . . . . . 10 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
2524adantll 476 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
26 0ne1 9177 . . . . . . . . . 10 0 ≠ 1
2726a1i 9 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → 0 ≠ 1)
2825, 27eqnetrd 2424 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1)
2928ex 115 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1))
3029necon2bd 2458 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3130imp 124 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
32 gcdn0cl 12483 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
3313, 31, 32syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℕ)
34 nnle1eq1 9134 . . . 4 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3533, 34syl 14 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3612, 35mpbid 147 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) = 1)
3736ex 115 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4083  (class class class)co 6001  0cc0 7999  1c1 8000   + caddc 8002   · cmul 8004  cle 8182  cn 9110  cz 9446  cdvds 12298   gcd cgcd 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475
This theorem is referenced by:  divgcdcoprm0  12623
  Copyright terms: Public domain W3C validator