ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutr1 GIF version

Theorem bezoutr1 12387
Description: Converse of bezout 12365 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 12386 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
21adantr 276 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌)))
3 simpr 110 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1)
42, 3breqtrd 4071 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∥ 1)
5 gcdcl 12320 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
65nn0zd 9495 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
76ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℤ)
8 1nn 9049 . . . . . 6 1 ∈ ℕ
98a1i 9 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → 1 ∈ ℕ)
10 dvdsle 12188 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
117, 9, 10syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ∥ 1 → (𝐴 gcd 𝐵) ≤ 1))
124, 11mpd 13 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ≤ 1)
13 simpll 527 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
14 oveq1 5953 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
15 oveq1 5953 . . . . . . . . . . . . 13 (𝐵 = 0 → (𝐵 · 𝑌) = (0 · 𝑌))
1614, 15oveqan12d 5965 . . . . . . . . . . . 12 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (0 · 𝑌)))
17 zcn 9379 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
1817mul02d 8466 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (0 · 𝑋) = 0)
19 zcn 9379 . . . . . . . . . . . . . 14 (𝑌 ∈ ℤ → 𝑌 ∈ ℂ)
2019mul02d 8466 . . . . . . . . . . . . 13 (𝑌 ∈ ℤ → (0 · 𝑌) = 0)
2118, 20oveqan12d 5965 . . . . . . . . . . . 12 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((0 · 𝑋) + (0 · 𝑌)) = (0 + 0))
2216, 21sylan9eqr 2260 . . . . . . . . . . 11 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = (0 + 0))
23 00id 8215 . . . . . . . . . . 11 (0 + 0) = 0
2422, 23eqtrdi 2254 . . . . . . . . . 10 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
2524adantll 476 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 0)
26 0ne1 9105 . . . . . . . . . 10 0 ≠ 1
2726a1i 9 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → 0 ≠ 1)
2825, 27eqnetrd 2400 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1)
2928ex 115 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ≠ 1))
3029necon2bd 2434 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3130imp 124 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
32 gcdn0cl 12316 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
3313, 31, 32syl2anc 411 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) ∈ ℕ)
34 nnle1eq1 9062 . . . 4 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3533, 34syl 14 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → ((𝐴 gcd 𝐵) ≤ 1 ↔ (𝐴 gcd 𝐵) = 1))
3612, 35mpbid 147 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1) → (𝐴 gcd 𝐵) = 1)
3736ex 115 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wne 2376   class class class wbr 4045  (class class class)co 5946  0cc0 7927  1c1 7928   + caddc 7930   · cmul 7932  cle 8110  cn 9038  cz 9374  cdvds 12131   gcd cgcd 12307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308
This theorem is referenced by:  divgcdcoprm0  12456
  Copyright terms: Public domain W3C validator