Proof of Theorem ennnfonelemk
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ 𝐾) → 𝑁 ∈ 𝐾) |
| 2 | | eqimss2 3238 |
. . . 4
⊢ (𝑁 = 𝐾 → 𝐾 ⊆ 𝑁) |
| 3 | 2 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → 𝐾 ⊆ 𝑁) |
| 4 | | eqid 2196 |
. . . . 5
⊢ (𝐹‘𝐾) = (𝐹‘𝐾) |
| 5 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) |
| 6 | 5 | neeq2d 2386 |
. . . . . . . 8
⊢ (𝑗 = 𝐾 → ((𝐹‘𝐾) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝐾) ≠ (𝐹‘𝐾))) |
| 7 | | ennnfonelemk.j |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) |
| 8 | 7 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) |
| 9 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ⊆ 𝑁) |
| 10 | | ennnfonelemk.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ω) |
| 11 | 10 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ∈ ω) |
| 12 | | ennnfonelemk.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ω) |
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝑁 ∈ ω) |
| 14 | | nnsucsssuc 6550 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ω ∧ 𝑁 ∈ ω) → (𝐾 ⊆ 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
| 15 | 11, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐾 ⊆ 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
| 16 | 9, 15 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → suc 𝐾 ⊆ suc 𝑁) |
| 17 | | peano2 4631 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → suc 𝑁 ∈
ω) |
| 18 | | nnord 4648 |
. . . . . . . . . . 11
⊢ (suc
𝑁 ∈ ω → Ord
suc 𝑁) |
| 19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → Ord suc 𝑁) |
| 20 | | ordelsuc 4541 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ω ∧ Ord suc
𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
| 21 | 11, 19, 20 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
| 22 | 16, 21 | mpbird 167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ∈ suc 𝑁) |
| 23 | 6, 8, 22 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐹‘𝐾) ≠ (𝐹‘𝐾)) |
| 24 | 23 | neneqd 2388 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → ¬ (𝐹‘𝐾) = (𝐹‘𝐾)) |
| 25 | 24 | ex 115 |
. . . . 5
⊢ (𝜑 → (𝐾 ⊆ 𝑁 → ¬ (𝐹‘𝐾) = (𝐹‘𝐾))) |
| 26 | 4, 25 | mt2i 645 |
. . . 4
⊢ (𝜑 → ¬ 𝐾 ⊆ 𝑁) |
| 27 | 26 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → ¬ 𝐾 ⊆ 𝑁) |
| 28 | 3, 27 | pm2.21dd 621 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → 𝑁 ∈ 𝐾) |
| 29 | 12 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ ω) |
| 30 | | nnon 4646 |
. . . . 5
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
| 31 | 29, 30 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ On) |
| 32 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
| 33 | | onelss 4422 |
. . . 4
⊢ (𝑁 ∈ On → (𝐾 ∈ 𝑁 → 𝐾 ⊆ 𝑁)) |
| 34 | 31, 32, 33 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝐾 ⊆ 𝑁) |
| 35 | 26 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → ¬ 𝐾 ⊆ 𝑁) |
| 36 | 34, 35 | pm2.21dd 621 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ 𝐾) |
| 37 | | nntri3or 6551 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝐾 ∈ ω) → (𝑁 ∈ 𝐾 ∨ 𝑁 = 𝐾 ∨ 𝐾 ∈ 𝑁)) |
| 38 | 12, 10, 37 | syl2anc 411 |
. 2
⊢ (𝜑 → (𝑁 ∈ 𝐾 ∨ 𝑁 = 𝐾 ∨ 𝐾 ∈ 𝑁)) |
| 39 | 1, 28, 36, 38 | mpjao3dan 1318 |
1
⊢ (𝜑 → 𝑁 ∈ 𝐾) |