Proof of Theorem ennnfonelemk
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ 𝐾) → 𝑁 ∈ 𝐾) |
2 | | eqimss2 3197 |
. . . 4
⊢ (𝑁 = 𝐾 → 𝐾 ⊆ 𝑁) |
3 | 2 | adantl 275 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → 𝐾 ⊆ 𝑁) |
4 | | eqid 2165 |
. . . . 5
⊢ (𝐹‘𝐾) = (𝐹‘𝐾) |
5 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) |
6 | 5 | neeq2d 2355 |
. . . . . . . 8
⊢ (𝑗 = 𝐾 → ((𝐹‘𝐾) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝐾) ≠ (𝐹‘𝐾))) |
7 | | ennnfonelemk.j |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) |
8 | 7 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) |
9 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ⊆ 𝑁) |
10 | | ennnfonelemk.k |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ω) |
11 | 10 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ∈ ω) |
12 | | ennnfonelemk.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ω) |
13 | 12 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝑁 ∈ ω) |
14 | | nnsucsssuc 6460 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ω ∧ 𝑁 ∈ ω) → (𝐾 ⊆ 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
15 | 11, 13, 14 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐾 ⊆ 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
16 | 9, 15 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → suc 𝐾 ⊆ suc 𝑁) |
17 | | peano2 4572 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → suc 𝑁 ∈
ω) |
18 | | nnord 4589 |
. . . . . . . . . . 11
⊢ (suc
𝑁 ∈ ω → Ord
suc 𝑁) |
19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → Ord suc 𝑁) |
20 | | ordelsuc 4482 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ω ∧ Ord suc
𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
21 | 11, 19, 20 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁)) |
22 | 16, 21 | mpbird 166 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → 𝐾 ∈ suc 𝑁) |
23 | 6, 8, 22 | rspcdva 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝐹‘𝐾) ≠ (𝐹‘𝐾)) |
24 | 23 | neneqd 2357 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → ¬ (𝐹‘𝐾) = (𝐹‘𝐾)) |
25 | 24 | ex 114 |
. . . . 5
⊢ (𝜑 → (𝐾 ⊆ 𝑁 → ¬ (𝐹‘𝐾) = (𝐹‘𝐾))) |
26 | 4, 25 | mt2i 634 |
. . . 4
⊢ (𝜑 → ¬ 𝐾 ⊆ 𝑁) |
27 | 26 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → ¬ 𝐾 ⊆ 𝑁) |
28 | 3, 27 | pm2.21dd 610 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 𝐾) → 𝑁 ∈ 𝐾) |
29 | 12 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ ω) |
30 | | nnon 4587 |
. . . . 5
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
31 | 29, 30 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ On) |
32 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
33 | | onelss 4365 |
. . . 4
⊢ (𝑁 ∈ On → (𝐾 ∈ 𝑁 → 𝐾 ⊆ 𝑁)) |
34 | 31, 32, 33 | sylc 62 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝐾 ⊆ 𝑁) |
35 | 26 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → ¬ 𝐾 ⊆ 𝑁) |
36 | 34, 35 | pm2.21dd 610 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ 𝐾) |
37 | | nntri3or 6461 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝐾 ∈ ω) → (𝑁 ∈ 𝐾 ∨ 𝑁 = 𝐾 ∨ 𝐾 ∈ 𝑁)) |
38 | 12, 10, 37 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝑁 ∈ 𝐾 ∨ 𝑁 = 𝐾 ∨ 𝐾 ∈ 𝑁)) |
39 | 1, 28, 36, 38 | mpjao3dan 1297 |
1
⊢ (𝜑 → 𝑁 ∈ 𝐾) |