ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemk GIF version

Theorem ennnfonelemk 12355
Description: Lemma for ennnfone 12380. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemk.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemk.k (𝜑𝐾 ∈ ω)
ennnfonelemk.n (𝜑𝑁 ∈ ω)
ennnfonelemk.j (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))
Assertion
Ref Expression
ennnfonelemk (𝜑𝑁𝐾)
Distinct variable groups:   𝑗,𝐹   𝑗,𝐾   𝑗,𝑁
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)

Proof of Theorem ennnfonelemk
StepHypRef Expression
1 simpr 109 . 2 ((𝜑𝑁𝐾) → 𝑁𝐾)
2 eqimss2 3202 . . . 4 (𝑁 = 𝐾𝐾𝑁)
32adantl 275 . . 3 ((𝜑𝑁 = 𝐾) → 𝐾𝑁)
4 eqid 2170 . . . . 5 (𝐹𝐾) = (𝐹𝐾)
5 fveq2 5496 . . . . . . . . 9 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
65neeq2d 2359 . . . . . . . 8 (𝑗 = 𝐾 → ((𝐹𝐾) ≠ (𝐹𝑗) ↔ (𝐹𝐾) ≠ (𝐹𝐾)))
7 ennnfonelemk.j . . . . . . . . 9 (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))
87adantr 274 . . . . . . . 8 ((𝜑𝐾𝑁) → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))
9 simpr 109 . . . . . . . . . 10 ((𝜑𝐾𝑁) → 𝐾𝑁)
10 ennnfonelemk.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ω)
1110adantr 274 . . . . . . . . . . 11 ((𝜑𝐾𝑁) → 𝐾 ∈ ω)
12 ennnfonelemk.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ω)
1312adantr 274 . . . . . . . . . . 11 ((𝜑𝐾𝑁) → 𝑁 ∈ ω)
14 nnsucsssuc 6471 . . . . . . . . . . 11 ((𝐾 ∈ ω ∧ 𝑁 ∈ ω) → (𝐾𝑁 ↔ suc 𝐾 ⊆ suc 𝑁))
1511, 13, 14syl2anc 409 . . . . . . . . . 10 ((𝜑𝐾𝑁) → (𝐾𝑁 ↔ suc 𝐾 ⊆ suc 𝑁))
169, 15mpbid 146 . . . . . . . . 9 ((𝜑𝐾𝑁) → suc 𝐾 ⊆ suc 𝑁)
17 peano2 4579 . . . . . . . . . . 11 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
18 nnord 4596 . . . . . . . . . . 11 (suc 𝑁 ∈ ω → Ord suc 𝑁)
1913, 17, 183syl 17 . . . . . . . . . 10 ((𝜑𝐾𝑁) → Ord suc 𝑁)
20 ordelsuc 4489 . . . . . . . . . 10 ((𝐾 ∈ ω ∧ Ord suc 𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁))
2111, 19, 20syl2anc 409 . . . . . . . . 9 ((𝜑𝐾𝑁) → (𝐾 ∈ suc 𝑁 ↔ suc 𝐾 ⊆ suc 𝑁))
2216, 21mpbird 166 . . . . . . . 8 ((𝜑𝐾𝑁) → 𝐾 ∈ suc 𝑁)
236, 8, 22rspcdva 2839 . . . . . . 7 ((𝜑𝐾𝑁) → (𝐹𝐾) ≠ (𝐹𝐾))
2423neneqd 2361 . . . . . 6 ((𝜑𝐾𝑁) → ¬ (𝐹𝐾) = (𝐹𝐾))
2524ex 114 . . . . 5 (𝜑 → (𝐾𝑁 → ¬ (𝐹𝐾) = (𝐹𝐾)))
264, 25mt2i 639 . . . 4 (𝜑 → ¬ 𝐾𝑁)
2726adantr 274 . . 3 ((𝜑𝑁 = 𝐾) → ¬ 𝐾𝑁)
283, 27pm2.21dd 615 . 2 ((𝜑𝑁 = 𝐾) → 𝑁𝐾)
2912adantr 274 . . . . 5 ((𝜑𝐾𝑁) → 𝑁 ∈ ω)
30 nnon 4594 . . . . 5 (𝑁 ∈ ω → 𝑁 ∈ On)
3129, 30syl 14 . . . 4 ((𝜑𝐾𝑁) → 𝑁 ∈ On)
32 simpr 109 . . . 4 ((𝜑𝐾𝑁) → 𝐾𝑁)
33 onelss 4372 . . . 4 (𝑁 ∈ On → (𝐾𝑁𝐾𝑁))
3431, 32, 33sylc 62 . . 3 ((𝜑𝐾𝑁) → 𝐾𝑁)
3526adantr 274 . . 3 ((𝜑𝐾𝑁) → ¬ 𝐾𝑁)
3634, 35pm2.21dd 615 . 2 ((𝜑𝐾𝑁) → 𝑁𝐾)
37 nntri3or 6472 . . 3 ((𝑁 ∈ ω ∧ 𝐾 ∈ ω) → (𝑁𝐾𝑁 = 𝐾𝐾𝑁))
3812, 10, 37syl2anc 409 . 2 (𝜑 → (𝑁𝐾𝑁 = 𝐾𝐾𝑁))
391, 28, 36, 38mpjao3dan 1302 1 (𝜑𝑁𝐾)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 972   = wceq 1348  wcel 2141  wne 2340  wral 2448  wss 3121  Ord word 4347  Oncon0 4348  suc csuc 4350  ωcom 4574  ontowfo 5196  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-iota 5160  df-fv 5206
This theorem is referenced by:  ennnfonelemex  12369
  Copyright terms: Public domain W3C validator