![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemr | GIF version |
Description: Lemma for ennnfone 12439. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
Ref | Expression |
---|---|
ennnfonelemr.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemr.f | ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) |
ennnfonelemr.n | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
Ref | Expression |
---|---|
ennnfonelemr | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemr.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | equequ1 1722 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | |
3 | 2 | dcbid 839 | . . . 4 ⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
4 | equequ2 1723 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | |
5 | 4 | dcbid 839 | . . . 4 ⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
6 | 3, 5 | cbvral2v 2728 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
7 | 1, 6 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
8 | ennnfonelemr.f | . 2 ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | |
9 | ennnfonelemr.n | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
10 | fveq2 5527 | . . . . . . . . 9 ⊢ (𝑗 = 𝑓 → (𝐹‘𝑗) = (𝐹‘𝑓)) | |
11 | 10 | neeq2d 2376 | . . . . . . . 8 ⊢ (𝑗 = 𝑓 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑓))) |
12 | 11 | cbvralv 2715 | . . . . . . 7 ⊢ (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
13 | 12 | rexbii 2494 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
14 | fveq2 5527 | . . . . . . . . 9 ⊢ (𝑘 = 𝑒 → (𝐹‘𝑘) = (𝐹‘𝑒)) | |
15 | 14 | neeq1d 2375 | . . . . . . . 8 ⊢ (𝑘 = 𝑒 → ((𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ (𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
16 | 15 | ralbidv 2487 | . . . . . . 7 ⊢ (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
17 | 16 | cbvrexv 2716 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
18 | 13, 17 | bitri 184 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
19 | 18 | ralbii 2493 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
20 | oveq2 5896 | . . . . . . 7 ⊢ (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑)) | |
21 | 20 | raleqdv 2689 | . . . . . 6 ⊢ (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
22 | 21 | rexbidv 2488 | . . . . 5 ⊢ (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
23 | 22 | cbvralv 2715 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
24 | 19, 23 | bitri 184 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
25 | 9, 24 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
26 | oveq1 5895 | . . . 4 ⊢ (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1)) | |
27 | 26 | cbvmptv 4111 | . . 3 ⊢ (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) |
28 | freceq1 6406 | . . 3 ⊢ ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) | |
29 | 27, 28 | ax-mp 5 | . 2 ⊢ frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) |
30 | 7, 8, 25, 29 | ennnfonelemnn0 12436 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 835 = wceq 1363 ≠ wne 2357 ∀wral 2465 ∃wrex 2466 class class class wbr 4015 ↦ cmpt 4076 –onto→wfo 5226 ‘cfv 5228 (class class class)co 5888 freccfrec 6404 ≈ cen 6751 0cc0 7824 1c1 7825 + caddc 7827 ℕcn 8932 ℕ0cn0 9189 ℤcz 9266 ...cfz 10021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-er 6548 df-pm 6664 df-en 6754 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 df-fz 10022 df-seqfrec 10459 |
This theorem is referenced by: ennnfone 12439 |
Copyright terms: Public domain | W3C validator |