ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemr GIF version

Theorem ennnfonelemr 12111
Description: Lemma for ennnfone 12113. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemr.f (𝜑𝐹:ℕ0onto𝐴)
ennnfonelemr.n (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
Assertion
Ref Expression
ennnfonelemr (𝜑𝐴 ≈ ℕ)
Distinct variable groups:   𝑦,𝐴,𝑥   𝑛,𝐹,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐴(𝑗,𝑘,𝑛)   𝐹(𝑥,𝑦)

Proof of Theorem ennnfonelemr
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 equequ1 1689 . . . . 5 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
32dcbid 824 . . . 4 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
4 equequ2 1690 . . . . 5 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
54dcbid 824 . . . 4 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
63, 5cbvral2v 2688 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
71, 6sylib 121 . 2 (𝜑 → ∀𝑎𝐴𝑏𝐴 DECID 𝑎 = 𝑏)
8 ennnfonelemr.f . 2 (𝜑𝐹:ℕ0onto𝐴)
9 ennnfonelemr.n . . 3 (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))
10 fveq2 5461 . . . . . . . . 9 (𝑗 = 𝑓 → (𝐹𝑗) = (𝐹𝑓))
1110neeq2d 2343 . . . . . . . 8 (𝑗 = 𝑓 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑓)))
1211cbvralv 2677 . . . . . . 7 (∀𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑓))
1312rexbii 2461 . . . . . 6 (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑓))
14 fveq2 5461 . . . . . . . . 9 (𝑘 = 𝑒 → (𝐹𝑘) = (𝐹𝑒))
1514neeq1d 2342 . . . . . . . 8 (𝑘 = 𝑒 → ((𝐹𝑘) ≠ (𝐹𝑓) ↔ (𝐹𝑒) ≠ (𝐹𝑓)))
1615ralbidv 2454 . . . . . . 7 (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓)))
1716cbvrexv 2678 . . . . . 6 (∃𝑘 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑓) ↔ ∃𝑒 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓))
1813, 17bitri 183 . . . . 5 (∃𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑒 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓))
1918ralbii 2460 . . . 4 (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓))
20 oveq2 5822 . . . . . . 7 (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑))
2120raleqdv 2655 . . . . . 6 (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹𝑒) ≠ (𝐹𝑓)))
2221rexbidv 2455 . . . . 5 (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓) ↔ ∃𝑒 ∈ ℕ0𝑓 ∈ (0...𝑑)(𝐹𝑒) ≠ (𝐹𝑓)))
2322cbvralv 2677 . . . 4 (∀𝑛 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ (0...𝑛)(𝐹𝑒) ≠ (𝐹𝑓) ↔ ∀𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ (0...𝑑)(𝐹𝑒) ≠ (𝐹𝑓))
2419, 23bitri 183 . . 3 (∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ (0...𝑑)(𝐹𝑒) ≠ (𝐹𝑓))
259, 24sylib 121 . 2 (𝜑 → ∀𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ (0...𝑑)(𝐹𝑒) ≠ (𝐹𝑓))
26 oveq1 5821 . . . 4 (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1))
2726cbvmptv 4056 . . 3 (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1))
28 freceq1 6329 . . 3 ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0))
2927, 28ax-mp 5 . 2 frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)
307, 8, 25, 29ennnfonelemnn0 12110 1 (𝜑𝐴 ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 820   = wceq 1332  wne 2324  wral 2432  wrex 2433   class class class wbr 3961  cmpt 4021  ontowfo 5161  cfv 5163  (class class class)co 5814  freccfrec 6327  cen 6672  0cc0 7711  1c1 7712   + caddc 7714  cn 8812  0cn0 9069  cz 9146  ...cfz 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-er 6469  df-pm 6585  df-en 6675  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891  df-seqfrec 10323
This theorem is referenced by:  ennnfone  12113
  Copyright terms: Public domain W3C validator