Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemr | GIF version |
Description: Lemma for ennnfone 12391. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
Ref | Expression |
---|---|
ennnfonelemr.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemr.f | ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) |
ennnfonelemr.n | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
Ref | Expression |
---|---|
ennnfonelemr | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemr.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | equequ1 1710 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | |
3 | 2 | dcbid 838 | . . . 4 ⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
4 | equequ2 1711 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | |
5 | 4 | dcbid 838 | . . . 4 ⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
6 | 3, 5 | cbvral2v 2714 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
7 | 1, 6 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
8 | ennnfonelemr.f | . 2 ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | |
9 | ennnfonelemr.n | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
10 | fveq2 5507 | . . . . . . . . 9 ⊢ (𝑗 = 𝑓 → (𝐹‘𝑗) = (𝐹‘𝑓)) | |
11 | 10 | neeq2d 2364 | . . . . . . . 8 ⊢ (𝑗 = 𝑓 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑓))) |
12 | 11 | cbvralv 2701 | . . . . . . 7 ⊢ (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
13 | 12 | rexbii 2482 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
14 | fveq2 5507 | . . . . . . . . 9 ⊢ (𝑘 = 𝑒 → (𝐹‘𝑘) = (𝐹‘𝑒)) | |
15 | 14 | neeq1d 2363 | . . . . . . . 8 ⊢ (𝑘 = 𝑒 → ((𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ (𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
16 | 15 | ralbidv 2475 | . . . . . . 7 ⊢ (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
17 | 16 | cbvrexv 2702 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
18 | 13, 17 | bitri 184 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
19 | 18 | ralbii 2481 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
20 | oveq2 5873 | . . . . . . 7 ⊢ (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑)) | |
21 | 20 | raleqdv 2676 | . . . . . 6 ⊢ (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
22 | 21 | rexbidv 2476 | . . . . 5 ⊢ (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
23 | 22 | cbvralv 2701 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
24 | 19, 23 | bitri 184 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
25 | 9, 24 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
26 | oveq1 5872 | . . . 4 ⊢ (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1)) | |
27 | 26 | cbvmptv 4094 | . . 3 ⊢ (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) |
28 | freceq1 6383 | . . 3 ⊢ ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) | |
29 | 27, 28 | ax-mp 5 | . 2 ⊢ frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) |
30 | 7, 8, 25, 29 | ennnfonelemnn0 12388 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 834 = wceq 1353 ≠ wne 2345 ∀wral 2453 ∃wrex 2454 class class class wbr 3998 ↦ cmpt 4059 –onto→wfo 5206 ‘cfv 5208 (class class class)co 5865 freccfrec 6381 ≈ cen 6728 0cc0 7786 1c1 7787 + caddc 7789 ℕcn 8890 ℕ0cn0 9147 ℤcz 9224 ...cfz 9977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-er 6525 df-pm 6641 df-en 6731 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-seqfrec 10414 |
This theorem is referenced by: ennnfone 12391 |
Copyright terms: Public domain | W3C validator |