| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemr | GIF version | ||
| Description: Lemma for ennnfone 12642. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| ennnfonelemr.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | 
| ennnfonelemr.f | ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | 
| ennnfonelemr.n | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | 
| Ref | Expression | 
|---|---|
| ennnfonelemr | ⊢ (𝜑 → 𝐴 ≈ ℕ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ennnfonelemr.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | equequ1 1726 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | |
| 3 | 2 | dcbid 839 | . . . 4 ⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) | 
| 4 | equequ2 1727 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | |
| 5 | 4 | dcbid 839 | . . . 4 ⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) | 
| 6 | 3, 5 | cbvral2v 2742 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) | 
| 7 | 1, 6 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) | 
| 8 | ennnfonelemr.f | . 2 ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | |
| 9 | ennnfonelemr.n | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 10 | fveq2 5558 | . . . . . . . . 9 ⊢ (𝑗 = 𝑓 → (𝐹‘𝑗) = (𝐹‘𝑓)) | |
| 11 | 10 | neeq2d 2386 | . . . . . . . 8 ⊢ (𝑗 = 𝑓 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑓))) | 
| 12 | 11 | cbvralv 2729 | . . . . . . 7 ⊢ (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) | 
| 13 | 12 | rexbii 2504 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) | 
| 14 | fveq2 5558 | . . . . . . . . 9 ⊢ (𝑘 = 𝑒 → (𝐹‘𝑘) = (𝐹‘𝑒)) | |
| 15 | 14 | neeq1d 2385 | . . . . . . . 8 ⊢ (𝑘 = 𝑒 → ((𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ (𝐹‘𝑒) ≠ (𝐹‘𝑓))) | 
| 16 | 15 | ralbidv 2497 | . . . . . . 7 ⊢ (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) | 
| 17 | 16 | cbvrexv 2730 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 18 | 13, 17 | bitri 184 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 19 | 18 | ralbii 2503 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 20 | oveq2 5930 | . . . . . . 7 ⊢ (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑)) | |
| 21 | 20 | raleqdv 2699 | . . . . . 6 ⊢ (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) | 
| 22 | 21 | rexbidv 2498 | . . . . 5 ⊢ (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) | 
| 23 | 22 | cbvralv 2729 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 24 | 19, 23 | bitri 184 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 25 | 9, 24 | sylib 122 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) | 
| 26 | oveq1 5929 | . . . 4 ⊢ (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1)) | |
| 27 | 26 | cbvmptv 4129 | . . 3 ⊢ (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) | 
| 28 | freceq1 6450 | . . 3 ⊢ ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) | |
| 29 | 27, 28 | ax-mp 5 | . 2 ⊢ frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) | 
| 30 | 7, 8, 25, 29 | ennnfonelemnn0 12639 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 DECID wdc 835 = wceq 1364 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 class class class wbr 4033 ↦ cmpt 4094 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 freccfrec 6448 ≈ cen 6797 0cc0 7879 1c1 7880 + caddc 7882 ℕcn 8990 ℕ0cn0 9249 ℤcz 9326 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-er 6592 df-pm 6710 df-en 6800 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 | 
| This theorem is referenced by: ennnfone 12642 | 
| Copyright terms: Public domain | W3C validator |