Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemr | GIF version |
Description: Lemma for ennnfone 12380. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
Ref | Expression |
---|---|
ennnfonelemr.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemr.f | ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) |
ennnfonelemr.n | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
Ref | Expression |
---|---|
ennnfonelemr | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemr.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | equequ1 1705 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | |
3 | 2 | dcbid 833 | . . . 4 ⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
4 | equequ2 1706 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | |
5 | 4 | dcbid 833 | . . . 4 ⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
6 | 3, 5 | cbvral2v 2709 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
7 | 1, 6 | sylib 121 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
8 | ennnfonelemr.f | . 2 ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | |
9 | ennnfonelemr.n | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
10 | fveq2 5496 | . . . . . . . . 9 ⊢ (𝑗 = 𝑓 → (𝐹‘𝑗) = (𝐹‘𝑓)) | |
11 | 10 | neeq2d 2359 | . . . . . . . 8 ⊢ (𝑗 = 𝑓 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑓))) |
12 | 11 | cbvralv 2696 | . . . . . . 7 ⊢ (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
13 | 12 | rexbii 2477 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
14 | fveq2 5496 | . . . . . . . . 9 ⊢ (𝑘 = 𝑒 → (𝐹‘𝑘) = (𝐹‘𝑒)) | |
15 | 14 | neeq1d 2358 | . . . . . . . 8 ⊢ (𝑘 = 𝑒 → ((𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ (𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
16 | 15 | ralbidv 2470 | . . . . . . 7 ⊢ (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
17 | 16 | cbvrexv 2697 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
18 | 13, 17 | bitri 183 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
19 | 18 | ralbii 2476 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
20 | oveq2 5861 | . . . . . . 7 ⊢ (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑)) | |
21 | 20 | raleqdv 2671 | . . . . . 6 ⊢ (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
22 | 21 | rexbidv 2471 | . . . . 5 ⊢ (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
23 | 22 | cbvralv 2696 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
24 | 19, 23 | bitri 183 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
25 | 9, 24 | sylib 121 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
26 | oveq1 5860 | . . . 4 ⊢ (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1)) | |
27 | 26 | cbvmptv 4085 | . . 3 ⊢ (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) |
28 | freceq1 6371 | . . 3 ⊢ ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) | |
29 | 27, 28 | ax-mp 5 | . 2 ⊢ frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) |
30 | 7, 8, 25, 29 | ennnfonelemnn0 12377 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 829 = wceq 1348 ≠ wne 2340 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ↦ cmpt 4050 –onto→wfo 5196 ‘cfv 5198 (class class class)co 5853 freccfrec 6369 ≈ cen 6716 0cc0 7774 1c1 7775 + caddc 7777 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-er 6513 df-pm 6629 df-en 6719 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-seqfrec 10402 |
This theorem is referenced by: ennnfone 12380 |
Copyright terms: Public domain | W3C validator |