Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemr | GIF version |
Description: Lemma for ennnfone 12113. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
Ref | Expression |
---|---|
ennnfonelemr.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemr.f | ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) |
ennnfonelemr.n | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
Ref | Expression |
---|---|
ennnfonelemr | ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemr.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | equequ1 1689 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | |
3 | 2 | dcbid 824 | . . . 4 ⊢ (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑎 = 𝑦)) |
4 | equequ2 1690 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | |
5 | 4 | dcbid 824 | . . . 4 ⊢ (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦 ↔ DECID 𝑎 = 𝑏)) |
6 | 3, 5 | cbvral2v 2688 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
7 | 1, 6 | sylib 121 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 DECID 𝑎 = 𝑏) |
8 | ennnfonelemr.f | . 2 ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) | |
9 | ennnfonelemr.n | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
10 | fveq2 5461 | . . . . . . . . 9 ⊢ (𝑗 = 𝑓 → (𝐹‘𝑗) = (𝐹‘𝑓)) | |
11 | 10 | neeq2d 2343 | . . . . . . . 8 ⊢ (𝑗 = 𝑓 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑓))) |
12 | 11 | cbvralv 2677 | . . . . . . 7 ⊢ (∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
13 | 12 | rexbii 2461 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓)) |
14 | fveq2 5461 | . . . . . . . . 9 ⊢ (𝑘 = 𝑒 → (𝐹‘𝑘) = (𝐹‘𝑒)) | |
15 | 14 | neeq1d 2342 | . . . . . . . 8 ⊢ (𝑘 = 𝑒 → ((𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ (𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
16 | 15 | ralbidv 2454 | . . . . . . 7 ⊢ (𝑘 = 𝑒 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
17 | 16 | cbvrexv 2678 | . . . . . 6 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
18 | 13, 17 | bitri 183 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
19 | 18 | ralbii 2460 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
20 | oveq2 5822 | . . . . . . 7 ⊢ (𝑛 = 𝑑 → (0...𝑛) = (0...𝑑)) | |
21 | 20 | raleqdv 2655 | . . . . . 6 ⊢ (𝑛 = 𝑑 → (∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
22 | 21 | rexbidv 2455 | . . . . 5 ⊢ (𝑛 = 𝑑 → (∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓))) |
23 | 22 | cbvralv 2677 | . . . 4 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑛)(𝐹‘𝑒) ≠ (𝐹‘𝑓) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
24 | 19, 23 | bitri 183 | . . 3 ⊢ (∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
25 | 9, 24 | sylib 121 | . 2 ⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∃𝑒 ∈ ℕ0 ∀𝑓 ∈ (0...𝑑)(𝐹‘𝑒) ≠ (𝐹‘𝑓)) |
26 | oveq1 5821 | . . . 4 ⊢ (𝑐 = 𝑎 → (𝑐 + 1) = (𝑎 + 1)) | |
27 | 26 | cbvmptv 4056 | . . 3 ⊢ (𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) |
28 | freceq1 6329 | . . 3 ⊢ ((𝑐 ∈ ℤ ↦ (𝑐 + 1)) = (𝑎 ∈ ℤ ↦ (𝑎 + 1)) → frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0)) | |
29 | 27, 28 | ax-mp 5 | . 2 ⊢ frec((𝑐 ∈ ℤ ↦ (𝑐 + 1)), 0) = frec((𝑎 ∈ ℤ ↦ (𝑎 + 1)), 0) |
30 | 7, 8, 25, 29 | ennnfonelemnn0 12110 | 1 ⊢ (𝜑 → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 820 = wceq 1332 ≠ wne 2324 ∀wral 2432 ∃wrex 2433 class class class wbr 3961 ↦ cmpt 4021 –onto→wfo 5161 ‘cfv 5163 (class class class)co 5814 freccfrec 6327 ≈ cen 6672 0cc0 7711 1c1 7712 + caddc 7714 ℕcn 8812 ℕ0cn0 9069 ℤcz 9146 ...cfz 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-er 6469 df-pm 6585 df-en 6675 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 df-seqfrec 10323 |
This theorem is referenced by: ennnfone 12113 |
Copyright terms: Public domain | W3C validator |