ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd GIF version

Theorem setscomd 12521
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a (𝜑𝐴𝑌)
setscomd.b (𝜑𝐵𝑍)
setscomd.s (𝜑𝑆𝑉)
setscomd.ab (𝜑𝐴𝐵)
setscomd.c (𝜑𝐶𝑊)
setscomd.d (𝜑𝐷𝑋)
Assertion
Ref Expression
setscomd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setscomd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2 (𝜑𝐴𝐵)
2 setscomd.b . . 3 (𝜑𝐵𝑍)
3 simpr 110 . . . . 5 ((𝜑𝑏 = 𝐵) → 𝑏 = 𝐵)
43neeq2d 2379 . . . 4 ((𝜑𝑏 = 𝐵) → (𝐴𝑏𝐴𝐵))
53opeq1d 3799 . . . . . 6 ((𝜑𝑏 = 𝐵) → ⟨𝑏, 𝐷⟩ = ⟨𝐵, 𝐷⟩)
65oveq2d 5907 . . . . 5 ((𝜑𝑏 = 𝐵) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩))
75oveq2d 5907 . . . . . 6 ((𝜑𝑏 = 𝐵) → (𝑆 sSet ⟨𝑏, 𝐷⟩) = (𝑆 sSet ⟨𝐵, 𝐷⟩))
87oveq1d 5906 . . . . 5 ((𝜑𝑏 = 𝐵) → ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
96, 8eqeq12d 2204 . . . 4 ((𝜑𝑏 = 𝐵) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) ↔ ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
104, 9imbi12d 234 . . 3 ((𝜑𝑏 = 𝐵) → ((𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)) ↔ (𝐴𝐵 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))))
11 setscomd.a . . . 4 (𝜑𝐴𝑌)
12 simpr 110 . . . . . 6 ((𝜑𝑎 = 𝐴) → 𝑎 = 𝐴)
1312neeq1d 2378 . . . . 5 ((𝜑𝑎 = 𝐴) → (𝑎𝑏𝐴𝑏))
1412opeq1d 3799 . . . . . . . 8 ((𝜑𝑎 = 𝐴) → ⟨𝑎, 𝐶⟩ = ⟨𝐴, 𝐶⟩)
1514oveq2d 5907 . . . . . . 7 ((𝜑𝑎 = 𝐴) → (𝑆 sSet ⟨𝑎, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
1615oveq1d 5906 . . . . . 6 ((𝜑𝑎 = 𝐴) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩))
1714oveq2d 5907 . . . . . 6 ((𝜑𝑎 = 𝐴) → ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
1816, 17eqeq12d 2204 . . . . 5 ((𝜑𝑎 = 𝐴) → (((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩) ↔ ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
1913, 18imbi12d 234 . . . 4 ((𝜑𝑎 = 𝐴) → ((𝑎𝑏 → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩)) ↔ (𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))))
20 setscomd.s . . . . . . 7 (𝜑𝑆𝑉)
2120adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝑆𝑉)
22 simpr 110 . . . . . 6 ((𝜑𝑎𝑏) → 𝑎𝑏)
23 setscomd.c . . . . . . 7 (𝜑𝐶𝑊)
2423adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝐶𝑊)
25 setscomd.d . . . . . . 7 (𝜑𝐷𝑋)
2625adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝐷𝑋)
27 vex 2755 . . . . . . 7 𝑎 ∈ V
28 vex 2755 . . . . . . 7 𝑏 ∈ V
2927, 28setscom 12520 . . . . . 6 (((𝑆𝑉𝑎𝑏) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩))
3021, 22, 24, 26, 29syl22anc 1250 . . . . 5 ((𝜑𝑎𝑏) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩))
3130ex 115 . . . 4 (𝜑 → (𝑎𝑏 → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩)))
3211, 19, 31vtocld 2804 . . 3 (𝜑 → (𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
332, 10, 32vtocld 2804 . 2 (𝜑 → (𝐴𝐵 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
341, 33mpd 13 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wne 2360  cop 3610  (class class class)co 5891   sSet csts 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-res 4653  df-iota 5193  df-fun 5233  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sets 12487
This theorem is referenced by:  mgpress  13246
  Copyright terms: Public domain W3C validator