ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd GIF version

Theorem setscomd 12719
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a (𝜑𝐴𝑌)
setscomd.b (𝜑𝐵𝑍)
setscomd.s (𝜑𝑆𝑉)
setscomd.ab (𝜑𝐴𝐵)
setscomd.c (𝜑𝐶𝑊)
setscomd.d (𝜑𝐷𝑋)
Assertion
Ref Expression
setscomd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setscomd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2 (𝜑𝐴𝐵)
2 setscomd.b . . 3 (𝜑𝐵𝑍)
3 simpr 110 . . . . 5 ((𝜑𝑏 = 𝐵) → 𝑏 = 𝐵)
43neeq2d 2386 . . . 4 ((𝜑𝑏 = 𝐵) → (𝐴𝑏𝐴𝐵))
53opeq1d 3814 . . . . . 6 ((𝜑𝑏 = 𝐵) → ⟨𝑏, 𝐷⟩ = ⟨𝐵, 𝐷⟩)
65oveq2d 5938 . . . . 5 ((𝜑𝑏 = 𝐵) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩))
75oveq2d 5938 . . . . . 6 ((𝜑𝑏 = 𝐵) → (𝑆 sSet ⟨𝑏, 𝐷⟩) = (𝑆 sSet ⟨𝐵, 𝐷⟩))
87oveq1d 5937 . . . . 5 ((𝜑𝑏 = 𝐵) → ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
96, 8eqeq12d 2211 . . . 4 ((𝜑𝑏 = 𝐵) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) ↔ ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
104, 9imbi12d 234 . . 3 ((𝜑𝑏 = 𝐵) → ((𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)) ↔ (𝐴𝐵 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))))
11 setscomd.a . . . 4 (𝜑𝐴𝑌)
12 simpr 110 . . . . . 6 ((𝜑𝑎 = 𝐴) → 𝑎 = 𝐴)
1312neeq1d 2385 . . . . 5 ((𝜑𝑎 = 𝐴) → (𝑎𝑏𝐴𝑏))
1412opeq1d 3814 . . . . . . . 8 ((𝜑𝑎 = 𝐴) → ⟨𝑎, 𝐶⟩ = ⟨𝐴, 𝐶⟩)
1514oveq2d 5938 . . . . . . 7 ((𝜑𝑎 = 𝐴) → (𝑆 sSet ⟨𝑎, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
1615oveq1d 5937 . . . . . 6 ((𝜑𝑎 = 𝐴) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩))
1714oveq2d 5938 . . . . . 6 ((𝜑𝑎 = 𝐴) → ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
1816, 17eqeq12d 2211 . . . . 5 ((𝜑𝑎 = 𝐴) → (((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩) ↔ ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
1913, 18imbi12d 234 . . . 4 ((𝜑𝑎 = 𝐴) → ((𝑎𝑏 → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩)) ↔ (𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))))
20 setscomd.s . . . . . . 7 (𝜑𝑆𝑉)
2120adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝑆𝑉)
22 simpr 110 . . . . . 6 ((𝜑𝑎𝑏) → 𝑎𝑏)
23 setscomd.c . . . . . . 7 (𝜑𝐶𝑊)
2423adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝐶𝑊)
25 setscomd.d . . . . . . 7 (𝜑𝐷𝑋)
2625adantr 276 . . . . . 6 ((𝜑𝑎𝑏) → 𝐷𝑋)
27 vex 2766 . . . . . . 7 𝑎 ∈ V
28 vex 2766 . . . . . . 7 𝑏 ∈ V
2927, 28setscom 12718 . . . . . 6 (((𝑆𝑉𝑎𝑏) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩))
3021, 22, 24, 26, 29syl22anc 1250 . . . . 5 ((𝜑𝑎𝑏) → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩))
3130ex 115 . . . 4 (𝜑 → (𝑎𝑏 → ((𝑆 sSet ⟨𝑎, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝑎, 𝐶⟩)))
3211, 19, 31vtocld 2816 . . 3 (𝜑 → (𝐴𝑏 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝑏, 𝐷⟩) = ((𝑆 sSet ⟨𝑏, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
332, 10, 32vtocld 2816 . 2 (𝜑 → (𝐴𝐵 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩)))
341, 33mpd 13 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  cop 3625  (class class class)co 5922   sSet csts 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sets 12685
This theorem is referenced by:  mgpress  13487
  Copyright terms: Public domain W3C validator