ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfoneleminc GIF version

Theorem ennnfoneleminc 12571
Description: Lemma for ennnfone 12585. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfoneleminc.p (𝜑𝑃 ∈ ℕ0)
ennnfoneleminc.q (𝜑𝑄 ∈ ℕ0)
ennnfoneleminc.le (𝜑𝑃𝑄)
Assertion
Ref Expression
ennnfoneleminc (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑛,𝐹,𝑗,𝑘   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑛)   𝐴(𝑗,𝑘,𝑛)   𝑃(𝑗,𝑘,𝑛)   𝑄(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfoneleminc
Dummy variables 𝑐 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfoneleminc.p . . . 4 (𝜑𝑃 ∈ ℕ0)
21nn0zd 9440 . . 3 (𝜑𝑃 ∈ ℤ)
3 ennnfoneleminc.q . . . 4 (𝜑𝑄 ∈ ℕ0)
43nn0zd 9440 . . 3 (𝜑𝑄 ∈ ℤ)
5 ennnfoneleminc.le . . 3 (𝜑𝑃𝑄)
62, 4, 53jca 1179 . 2 (𝜑 → (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄))
7 fveq2 5555 . . . . 5 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
87sseq2d 3210 . . . 4 (𝑤 = 𝑃 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑃)))
98imbi2d 230 . . 3 (𝑤 = 𝑃 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃))))
10 fveq2 5555 . . . . 5 (𝑤 = 𝑟 → (𝐻𝑤) = (𝐻𝑟))
1110sseq2d 3210 . . . 4 (𝑤 = 𝑟 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑟)))
1211imbi2d 230 . . 3 (𝑤 = 𝑟 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟))))
13 fveq2 5555 . . . . 5 (𝑤 = (𝑟 + 1) → (𝐻𝑤) = (𝐻‘(𝑟 + 1)))
1413sseq2d 3210 . . . 4 (𝑤 = (𝑟 + 1) → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑟 + 1) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
16 fveq2 5555 . . . . 5 (𝑤 = 𝑄 → (𝐻𝑤) = (𝐻𝑄))
1716sseq2d 3210 . . . 4 (𝑤 = 𝑄 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑄)))
1817imbi2d 230 . . 3 (𝑤 = 𝑄 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))))
19 ssidd 3201 . . . 4 (𝑃 ∈ ℤ → (𝐻𝑃) ⊆ (𝐻𝑃))
2019a1d 22 . . 3 (𝑃 ∈ ℤ → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃)))
21 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻𝑟))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2322ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
24 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2524ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝐹:ω–onto𝐴)
26 ennnfonelemh.ne . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
2726ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
28 fveq2 5555 . . . . . . . . . . . . . . 15 (𝑗 = 𝑐 → (𝐹𝑗) = (𝐹𝑐))
2928neeq2d 2383 . . . . . . . . . . . . . 14 (𝑗 = 𝑐 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑐)))
3029cbvralv 2726 . . . . . . . . . . . . 13 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
3130rexbii 2501 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
32 fveq2 5555 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
3332neeq1d 2382 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑐) ↔ (𝐹𝑏) ≠ (𝐹𝑐)))
3433ralbidv 2494 . . . . . . . . . . . . 13 (𝑘 = 𝑏 → (∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐)))
3534cbvrexv 2727 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3631, 35bitri 184 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3736ralbii 2500 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
38 suceq 4434 . . . . . . . . . . . . 13 (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎)
3938raleqdv 2696 . . . . . . . . . . . 12 (𝑛 = 𝑎 → (∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4039rexbidv 2495 . . . . . . . . . . 11 (𝑛 = 𝑎 → (∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4140cbvralv 2726 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4237, 41bitri 184 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4327, 42sylib 122 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
44 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
45 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
46 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
47 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
48 simplr2 1042 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℤ)
49 0red 8022 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ∈ ℝ)
501nn0red 9297 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ)
5150ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃 ∈ ℝ)
5248zred 9442 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℝ)
531nn0ge0d 9299 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑃)
5453ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑃)
55 simplr3 1043 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃𝑟)
5649, 51, 52, 54, 55letrd 8145 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑟)
57 elnn0z 9333 . . . . . . . . 9 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
5848, 56, 57sylanbrc 417 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℕ0)
5923, 25, 43, 44, 45, 46, 47, 58ennnfonelemss 12570 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑟) ⊆ (𝐻‘(𝑟 + 1)))
6021, 59sstrd 3190 . . . . . 6 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))
6160ex 115 . . . . 5 ((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
6261expcom 116 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → (𝜑 → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
6362a2d 26 . . 3 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
649, 12, 15, 18, 20, 63uzind 9431 . 2 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄) → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄)))
656, 64mpcom 36 1 (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  cun 3152  wss 3154  c0 3447  ifcif 3558  {csn 3619  cop 3622   class class class wbr 4030  cmpt 4091  suc csuc 4397  ωcom 4623  ccnv 4659  dom cdm 4660  cima 4663  ontowfo 5253  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  pm cpm 6705  cr 7873  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cmin 8192  0cn0 9243  cz 9320  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  ennnfonelemex  12574  ennnfonelemrnh  12576
  Copyright terms: Public domain W3C validator