ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfoneleminc GIF version

Theorem ennnfoneleminc 12344
Description: Lemma for ennnfone 12358. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfoneleminc.p (𝜑𝑃 ∈ ℕ0)
ennnfoneleminc.q (𝜑𝑄 ∈ ℕ0)
ennnfoneleminc.le (𝜑𝑃𝑄)
Assertion
Ref Expression
ennnfoneleminc (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑛,𝐹,𝑗,𝑘   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑛)   𝐴(𝑗,𝑘,𝑛)   𝑃(𝑗,𝑘,𝑛)   𝑄(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfoneleminc
Dummy variables 𝑐 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfoneleminc.p . . . 4 (𝜑𝑃 ∈ ℕ0)
21nn0zd 9311 . . 3 (𝜑𝑃 ∈ ℤ)
3 ennnfoneleminc.q . . . 4 (𝜑𝑄 ∈ ℕ0)
43nn0zd 9311 . . 3 (𝜑𝑄 ∈ ℤ)
5 ennnfoneleminc.le . . 3 (𝜑𝑃𝑄)
62, 4, 53jca 1167 . 2 (𝜑 → (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄))
7 fveq2 5486 . . . . 5 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
87sseq2d 3172 . . . 4 (𝑤 = 𝑃 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑃)))
98imbi2d 229 . . 3 (𝑤 = 𝑃 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃))))
10 fveq2 5486 . . . . 5 (𝑤 = 𝑟 → (𝐻𝑤) = (𝐻𝑟))
1110sseq2d 3172 . . . 4 (𝑤 = 𝑟 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑟)))
1211imbi2d 229 . . 3 (𝑤 = 𝑟 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟))))
13 fveq2 5486 . . . . 5 (𝑤 = (𝑟 + 1) → (𝐻𝑤) = (𝐻‘(𝑟 + 1)))
1413sseq2d 3172 . . . 4 (𝑤 = (𝑟 + 1) → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
1514imbi2d 229 . . 3 (𝑤 = (𝑟 + 1) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
16 fveq2 5486 . . . . 5 (𝑤 = 𝑄 → (𝐻𝑤) = (𝐻𝑄))
1716sseq2d 3172 . . . 4 (𝑤 = 𝑄 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑄)))
1817imbi2d 229 . . 3 (𝑤 = 𝑄 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))))
19 ssidd 3163 . . . 4 (𝑃 ∈ ℤ → (𝐻𝑃) ⊆ (𝐻𝑃))
2019a1d 22 . . 3 (𝑃 ∈ ℤ → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃)))
21 simpr 109 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻𝑟))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2322ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
24 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2524ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝐹:ω–onto𝐴)
26 ennnfonelemh.ne . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
2726ad2antrr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
28 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑗 = 𝑐 → (𝐹𝑗) = (𝐹𝑐))
2928neeq2d 2355 . . . . . . . . . . . . . 14 (𝑗 = 𝑐 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑐)))
3029cbvralv 2692 . . . . . . . . . . . . 13 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
3130rexbii 2473 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
32 fveq2 5486 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
3332neeq1d 2354 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑐) ↔ (𝐹𝑏) ≠ (𝐹𝑐)))
3433ralbidv 2466 . . . . . . . . . . . . 13 (𝑘 = 𝑏 → (∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐)))
3534cbvrexv 2693 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3631, 35bitri 183 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3736ralbii 2472 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
38 suceq 4380 . . . . . . . . . . . . 13 (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎)
3938raleqdv 2667 . . . . . . . . . . . 12 (𝑛 = 𝑎 → (∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4039rexbidv 2467 . . . . . . . . . . 11 (𝑛 = 𝑎 → (∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4140cbvralv 2692 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4237, 41bitri 183 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4327, 42sylib 121 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
44 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
45 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
46 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
47 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
48 simplr2 1030 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℤ)
49 0red 7900 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ∈ ℝ)
501nn0red 9168 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ)
5150ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃 ∈ ℝ)
5248zred 9313 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℝ)
531nn0ge0d 9170 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑃)
5453ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑃)
55 simplr3 1031 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃𝑟)
5649, 51, 52, 54, 55letrd 8022 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑟)
57 elnn0z 9204 . . . . . . . . 9 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
5848, 56, 57sylanbrc 414 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℕ0)
5923, 25, 43, 44, 45, 46, 47, 58ennnfonelemss 12343 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑟) ⊆ (𝐻‘(𝑟 + 1)))
6021, 59sstrd 3152 . . . . . 6 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))
6160ex 114 . . . . 5 ((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
6261expcom 115 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → (𝜑 → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
6362a2d 26 . . 3 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
649, 12, 15, 18, 20, 63uzind 9302 . 2 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄) → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄)))
656, 64mpcom 36 1 (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wne 2336  wral 2444  wrex 2445  cun 3114  wss 3116  c0 3409  ifcif 3520  {csn 3576  cop 3579   class class class wbr 3982  cmpt 4043  suc csuc 4343  ωcom 4567  ccnv 4603  dom cdm 4604  cima 4607  ontowfo 5186  cfv 5188  (class class class)co 5842  cmpo 5844  freccfrec 6358  pm cpm 6615  cr 7752  0cc0 7753  1c1 7754   + caddc 7756  cle 7934  cmin 8069  0cn0 9114  cz 9191  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  ennnfonelemex  12347  ennnfonelemrnh  12349
  Copyright terms: Public domain W3C validator