Step | Hyp | Ref
| Expression |
1 | | ennnfoneleminc.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
2 | 1 | nn0zd 9311 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℤ) |
3 | | ennnfoneleminc.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈
ℕ0) |
4 | 3 | nn0zd 9311 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℤ) |
5 | | ennnfoneleminc.le |
. . 3
⊢ (𝜑 → 𝑃 ≤ 𝑄) |
6 | 2, 4, 5 | 3jca 1167 |
. 2
⊢ (𝜑 → (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃 ≤ 𝑄)) |
7 | | fveq2 5486 |
. . . . 5
⊢ (𝑤 = 𝑃 → (𝐻‘𝑤) = (𝐻‘𝑃)) |
8 | 7 | sseq2d 3172 |
. . . 4
⊢ (𝑤 = 𝑃 → ((𝐻‘𝑃) ⊆ (𝐻‘𝑤) ↔ (𝐻‘𝑃) ⊆ (𝐻‘𝑃))) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑃 → ((𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑤)) ↔ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑃)))) |
10 | | fveq2 5486 |
. . . . 5
⊢ (𝑤 = 𝑟 → (𝐻‘𝑤) = (𝐻‘𝑟)) |
11 | 10 | sseq2d 3172 |
. . . 4
⊢ (𝑤 = 𝑟 → ((𝐻‘𝑃) ⊆ (𝐻‘𝑤) ↔ (𝐻‘𝑃) ⊆ (𝐻‘𝑟))) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑟 → ((𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑤)) ↔ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑟)))) |
13 | | fveq2 5486 |
. . . . 5
⊢ (𝑤 = (𝑟 + 1) → (𝐻‘𝑤) = (𝐻‘(𝑟 + 1))) |
14 | 13 | sseq2d 3172 |
. . . 4
⊢ (𝑤 = (𝑟 + 1) → ((𝐻‘𝑃) ⊆ (𝐻‘𝑤) ↔ (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1)))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑟 + 1) → ((𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑤)) ↔ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1))))) |
16 | | fveq2 5486 |
. . . . 5
⊢ (𝑤 = 𝑄 → (𝐻‘𝑤) = (𝐻‘𝑄)) |
17 | 16 | sseq2d 3172 |
. . . 4
⊢ (𝑤 = 𝑄 → ((𝐻‘𝑃) ⊆ (𝐻‘𝑤) ↔ (𝐻‘𝑃) ⊆ (𝐻‘𝑄))) |
18 | 17 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑄 → ((𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑤)) ↔ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄)))) |
19 | | ssidd 3163 |
. . . 4
⊢ (𝑃 ∈ ℤ → (𝐻‘𝑃) ⊆ (𝐻‘𝑃)) |
20 | 19 | a1d 22 |
. . 3
⊢ (𝑃 ∈ ℤ → (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑃))) |
21 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) |
22 | | ennnfonelemh.dceq |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
23 | 22 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
24 | | ennnfonelemh.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
25 | 24 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝐹:ω–onto→𝐴) |
26 | | ennnfonelemh.ne |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
27 | 26 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
28 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑐 → (𝐹‘𝑗) = (𝐹‘𝑐)) |
29 | 28 | neeq2d 2355 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑐 → ((𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ (𝐹‘𝑘) ≠ (𝐹‘𝑐))) |
30 | 29 | cbvralv 2692 |
. . . . . . . . . . . . 13
⊢
(∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑐 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑐)) |
31 | 30 | rexbii 2473 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑐)) |
32 | | fveq2 5486 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
33 | 32 | neeq1d 2354 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) ≠ (𝐹‘𝑐) ↔ (𝐹‘𝑏) ≠ (𝐹‘𝑐))) |
34 | 33 | ralbidv 2466 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑏 → (∀𝑐 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐))) |
35 | 34 | cbvrexv 2693 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
ω ∀𝑐 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
36 | 31, 35 | bitri 183 |
. . . . . . . . . . 11
⊢
(∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
37 | 36 | ralbii 2472 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
38 | | suceq 4380 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎) |
39 | 38 | raleqdv 2667 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑎 → (∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐) ↔ ∀𝑐 ∈ suc 𝑎(𝐹‘𝑏) ≠ (𝐹‘𝑐))) |
40 | 39 | rexbidv 2467 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹‘𝑏) ≠ (𝐹‘𝑐))) |
41 | 40 | cbvralv 2692 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
ω ∃𝑏 ∈
ω ∀𝑐 ∈
suc 𝑛(𝐹‘𝑏) ≠ (𝐹‘𝑐) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
42 | 37, 41 | bitri 183 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ∃𝑘 ∈
ω ∀𝑗 ∈
suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
43 | 27, 42 | sylib 121 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹‘𝑏) ≠ (𝐹‘𝑐)) |
44 | | ennnfonelemh.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
45 | | ennnfonelemh.n |
. . . . . . . 8
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
46 | | ennnfonelemh.j |
. . . . . . . 8
⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
47 | | ennnfonelemh.h |
. . . . . . . 8
⊢ 𝐻 = seq0(𝐺, 𝐽) |
48 | | simplr2 1030 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝑟 ∈ ℤ) |
49 | | 0red 7900 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 0 ∈ ℝ) |
50 | 1 | nn0red 9168 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℝ) |
51 | 50 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝑃 ∈ ℝ) |
52 | 48 | zred 9313 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝑟 ∈ ℝ) |
53 | 1 | nn0ge0d 9170 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 𝑃) |
54 | 53 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 0 ≤ 𝑃) |
55 | | simplr3 1031 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝑃 ≤ 𝑟) |
56 | 49, 51, 52, 54, 55 | letrd 8022 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 0 ≤ 𝑟) |
57 | | elnn0z 9204 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℕ0
↔ (𝑟 ∈ ℤ
∧ 0 ≤ 𝑟)) |
58 | 48, 56, 57 | sylanbrc 414 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → 𝑟 ∈ ℕ0) |
59 | 23, 25, 43, 44, 45, 46, 47, 58 | ennnfonelemss 12343 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → (𝐻‘𝑟) ⊆ (𝐻‘(𝑟 + 1))) |
60 | 21, 59 | sstrd 3152 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) ∧ (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1))) |
61 | 60 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟)) → ((𝐻‘𝑃) ⊆ (𝐻‘𝑟) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1)))) |
62 | 61 | expcom 115 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟) → (𝜑 → ((𝐻‘𝑃) ⊆ (𝐻‘𝑟) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1))))) |
63 | 62 | a2d 26 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃 ≤ 𝑟) → ((𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑟)) → (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑟 + 1))))) |
64 | 9, 12, 15, 18, 20, 63 | uzind 9302 |
. 2
⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃 ≤ 𝑄) → (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄))) |
65 | 6, 64 | mpcom 36 |
1
⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄)) |