ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfoneleminc GIF version

Theorem ennnfoneleminc 12379
Description: Lemma for ennnfone 12393. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfoneleminc.p (𝜑𝑃 ∈ ℕ0)
ennnfoneleminc.q (𝜑𝑄 ∈ ℕ0)
ennnfoneleminc.le (𝜑𝑃𝑄)
Assertion
Ref Expression
ennnfoneleminc (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑛,𝐹,𝑗,𝑘   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑛)   𝐴(𝑗,𝑘,𝑛)   𝑃(𝑗,𝑘,𝑛)   𝑄(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑗,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfoneleminc
Dummy variables 𝑐 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfoneleminc.p . . . 4 (𝜑𝑃 ∈ ℕ0)
21nn0zd 9346 . . 3 (𝜑𝑃 ∈ ℤ)
3 ennnfoneleminc.q . . . 4 (𝜑𝑄 ∈ ℕ0)
43nn0zd 9346 . . 3 (𝜑𝑄 ∈ ℤ)
5 ennnfoneleminc.le . . 3 (𝜑𝑃𝑄)
62, 4, 53jca 1177 . 2 (𝜑 → (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄))
7 fveq2 5507 . . . . 5 (𝑤 = 𝑃 → (𝐻𝑤) = (𝐻𝑃))
87sseq2d 3183 . . . 4 (𝑤 = 𝑃 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑃)))
98imbi2d 230 . . 3 (𝑤 = 𝑃 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃))))
10 fveq2 5507 . . . . 5 (𝑤 = 𝑟 → (𝐻𝑤) = (𝐻𝑟))
1110sseq2d 3183 . . . 4 (𝑤 = 𝑟 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑟)))
1211imbi2d 230 . . 3 (𝑤 = 𝑟 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟))))
13 fveq2 5507 . . . . 5 (𝑤 = (𝑟 + 1) → (𝐻𝑤) = (𝐻‘(𝑟 + 1)))
1413sseq2d 3183 . . . 4 (𝑤 = (𝑟 + 1) → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑟 + 1) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
16 fveq2 5507 . . . . 5 (𝑤 = 𝑄 → (𝐻𝑤) = (𝐻𝑄))
1716sseq2d 3183 . . . 4 (𝑤 = 𝑄 → ((𝐻𝑃) ⊆ (𝐻𝑤) ↔ (𝐻𝑃) ⊆ (𝐻𝑄)))
1817imbi2d 230 . . 3 (𝑤 = 𝑄 → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑤)) ↔ (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))))
19 ssidd 3174 . . . 4 (𝑃 ∈ ℤ → (𝐻𝑃) ⊆ (𝐻𝑃))
2019a1d 22 . . 3 (𝑃 ∈ ℤ → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑃)))
21 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻𝑟))
22 ennnfonelemh.dceq . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2322ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
24 ennnfonelemh.f . . . . . . . . 9 (𝜑𝐹:ω–onto𝐴)
2524ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝐹:ω–onto𝐴)
26 ennnfonelemh.ne . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
2726ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
28 fveq2 5507 . . . . . . . . . . . . . . 15 (𝑗 = 𝑐 → (𝐹𝑗) = (𝐹𝑐))
2928neeq2d 2364 . . . . . . . . . . . . . 14 (𝑗 = 𝑐 → ((𝐹𝑘) ≠ (𝐹𝑗) ↔ (𝐹𝑘) ≠ (𝐹𝑐)))
3029cbvralv 2701 . . . . . . . . . . . . 13 (∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
3130rexbii 2482 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐))
32 fveq2 5507 . . . . . . . . . . . . . . 15 (𝑘 = 𝑏 → (𝐹𝑘) = (𝐹𝑏))
3332neeq1d 2363 . . . . . . . . . . . . . 14 (𝑘 = 𝑏 → ((𝐹𝑘) ≠ (𝐹𝑐) ↔ (𝐹𝑏) ≠ (𝐹𝑐)))
3433ralbidv 2475 . . . . . . . . . . . . 13 (𝑘 = 𝑏 → (∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐)))
3534cbvrexv 2702 . . . . . . . . . . . 12 (∃𝑘 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3631, 35bitri 184 . . . . . . . . . . 11 (∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
3736ralbii 2481 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐))
38 suceq 4396 . . . . . . . . . . . . 13 (𝑛 = 𝑎 → suc 𝑛 = suc 𝑎)
3938raleqdv 2676 . . . . . . . . . . . 12 (𝑛 = 𝑎 → (∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4039rexbidv 2476 . . . . . . . . . . 11 (𝑛 = 𝑎 → (∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐)))
4140cbvralv 2701 . . . . . . . . . 10 (∀𝑛 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑛(𝐹𝑏) ≠ (𝐹𝑐) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4237, 41bitri 184 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗) ↔ ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
4327, 42sylib 122 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → ∀𝑎 ∈ ω ∃𝑏 ∈ ω ∀𝑐 ∈ suc 𝑎(𝐹𝑏) ≠ (𝐹𝑐))
44 ennnfonelemh.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
45 ennnfonelemh.n . . . . . . . 8 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
46 ennnfonelemh.j . . . . . . . 8 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
47 ennnfonelemh.h . . . . . . . 8 𝐻 = seq0(𝐺, 𝐽)
48 simplr2 1040 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℤ)
49 0red 7933 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ∈ ℝ)
501nn0red 9203 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ)
5150ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃 ∈ ℝ)
5248zred 9348 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℝ)
531nn0ge0d 9205 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑃)
5453ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑃)
55 simplr3 1041 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑃𝑟)
5649, 51, 52, 54, 55letrd 8055 . . . . . . . . 9 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 0 ≤ 𝑟)
57 elnn0z 9239 . . . . . . . . 9 (𝑟 ∈ ℕ0 ↔ (𝑟 ∈ ℤ ∧ 0 ≤ 𝑟))
5848, 56, 57sylanbrc 417 . . . . . . . 8 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → 𝑟 ∈ ℕ0)
5923, 25, 43, 44, 45, 46, 47, 58ennnfonelemss 12378 . . . . . . 7 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑟) ⊆ (𝐻‘(𝑟 + 1)))
6021, 59sstrd 3163 . . . . . 6 (((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) ∧ (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))
6160ex 115 . . . . 5 ((𝜑 ∧ (𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟)) → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1))))
6261expcom 116 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → (𝜑 → ((𝐻𝑃) ⊆ (𝐻𝑟) → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
6362a2d 26 . . 3 ((𝑃 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 𝑃𝑟) → ((𝜑 → (𝐻𝑃) ⊆ (𝐻𝑟)) → (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑟 + 1)))))
649, 12, 15, 18, 20, 63uzind 9337 . 2 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 𝑃𝑄) → (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄)))
656, 64mpcom 36 1 (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834  w3a 978   = wceq 1353  wcel 2146  wne 2345  wral 2453  wrex 2454  cun 3125  wss 3127  c0 3420  ifcif 3532  {csn 3589  cop 3592   class class class wbr 3998  cmpt 4059  suc csuc 4359  ωcom 4583  ccnv 4619  dom cdm 4620  cima 4623  ontowfo 5206  cfv 5208  (class class class)co 5865  cmpo 5867  freccfrec 6381  pm cpm 6639  cr 7785  0cc0 7786  1c1 7787   + caddc 7789  cle 7967  cmin 8102  0cn0 9149  cz 9226  seqcseq 10415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pm 6641  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-seqfrec 10416
This theorem is referenced by:  ennnfonelemex  12382  ennnfonelemrnh  12384
  Copyright terms: Public domain W3C validator