| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfiotadw | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Jim Kingdon, 21-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfiota2 5220 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
| 2 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 6 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
| 7 | 5, 6 | nfeq 2347 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | 
| 8 | 7 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | 
| 9 | 4, 8 | nfbid 1602 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) | 
| 10 | 3, 9 | nfald 1774 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) | 
| 11 | 2, 10 | nfabd 2359 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) | 
| 12 | 11 | nfunid 3846 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) | 
| 13 | 1, 12 | nfcxfrd 2337 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 {cab 2182 Ⅎwnfc 2326 ∪ cuni 3839 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3628 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: nfiotaw 5223 nfriotadxy 5886 | 
| Copyright terms: Public domain | W3C validator |