ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw GIF version

Theorem nfiotadw 5218
Description: Bound-variable hypothesis builder for the class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadw.1 𝑦𝜑
nfiotadw.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotadw (𝜑𝑥(℩𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfiotadw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5216 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1539 . . . 4 𝑧𝜑
3 nfiotadw.1 . . . . 5 𝑦𝜑
4 nfiotadw.2 . . . . . 6 (𝜑 → Ⅎ𝑥𝜓)
5 nfcv 2336 . . . . . . . 8 𝑥𝑦
6 nfcv 2336 . . . . . . . 8 𝑥𝑧
75, 6nfeq 2344 . . . . . . 7 𝑥 𝑦 = 𝑧
87a1i 9 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
94, 8nfbid 1599 . . . . 5 (𝜑 → Ⅎ𝑥(𝜓𝑦 = 𝑧))
103, 9nfald 1771 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
112, 10nfabd 2356 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
1211nfunid 3842 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
131, 12nfcxfrd 2334 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  {cab 2179  wnfc 2323   cuni 3835  cio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-sn 3624  df-uni 3836  df-iota 5215
This theorem is referenced by:  nfiotaw  5219  nfriotadxy  5882
  Copyright terms: Public domain W3C validator