ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadw GIF version

Theorem nfiotadw 5138
Description: Bound-variable hypothesis builder for the class. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
nfiotadw.1 𝑦𝜑
nfiotadw.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotadw (𝜑𝑥(℩𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfiotadw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5136 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1508 . . . 4 𝑧𝜑
3 nfiotadw.1 . . . . 5 𝑦𝜑
4 nfiotadw.2 . . . . . 6 (𝜑 → Ⅎ𝑥𝜓)
5 nfcv 2299 . . . . . . . 8 𝑥𝑦
6 nfcv 2299 . . . . . . . 8 𝑥𝑧
75, 6nfeq 2307 . . . . . . 7 𝑥 𝑦 = 𝑧
87a1i 9 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
94, 8nfbid 1568 . . . . 5 (𝜑 → Ⅎ𝑥(𝜓𝑦 = 𝑧))
103, 9nfald 1740 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
112, 10nfabd 2319 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
1211nfunid 3779 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
131, 12nfcxfrd 2297 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1333   = wceq 1335  wnf 1440  {cab 2143  wnfc 2286   cuni 3772  cio 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-sn 3566  df-uni 3773  df-iota 5135
This theorem is referenced by:  nfiotaw  5139  nfriotadxy  5788
  Copyright terms: Public domain W3C validator