| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiotadw | GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Jim Kingdon, 21-Dec-2018.) |
| Ref | Expression |
|---|---|
| nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5278 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
| 2 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 6 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑧 | |
| 7 | 5, 6 | nfeq 2380 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 = 𝑧 |
| 8 | 7 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) |
| 9 | 4, 8 | nfbid 1634 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
| 10 | 3, 9 | nfald 1806 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
| 11 | 2, 10 | nfabd 2392 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 12 | 11 | nfunid 3894 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
| 13 | 1, 12 | nfcxfrd 2370 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 {cab 2215 Ⅎwnfc 2359 ∪ cuni 3887 ℩cio 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-sn 3672 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: nfiotaw 5281 nfriotadxy 5962 |
| Copyright terms: Public domain | W3C validator |