| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2df | GIF version | ||
| Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| iota2df.4 | ⊢ Ⅎ𝑥𝜑 |
| iota2df.5 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| iota2df.6 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| iota2df | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 4 | 3 | eqeq2d 2208 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((℩𝑥𝜓) = 𝑥 ↔ (℩𝑥𝜓) = 𝐵)) |
| 5 | 2, 4 | bibi12d 235 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((𝜓 ↔ (℩𝑥𝜓) = 𝑥) ↔ (𝜒 ↔ (℩𝑥𝜓) = 𝐵))) |
| 6 | iota2df.2 | . . 3 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 7 | iota1 5233 | . . 3 ⊢ (∃!𝑥𝜓 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) |
| 9 | iota2df.4 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 10 | iota2df.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 11 | iota2df.5 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 12 | nfiota1 5221 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥𝜓) | |
| 13 | 12 | a1i 9 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓)) |
| 14 | 13, 10 | nfeqd 2354 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓) = 𝐵) |
| 15 | 11, 14 | nfbid 1602 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 2815 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∃!weu 2045 ∈ wcel 2167 Ⅎwnfc 2326 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: iota2d 5245 iota2 5248 riota2df 5898 |
| Copyright terms: Public domain | W3C validator |