ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2df GIF version

Theorem iota2df 5203
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1 (𝜑𝐵𝑉)
iota2df.2 (𝜑 → ∃!𝑥𝜓)
iota2df.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
iota2df.4 𝑥𝜑
iota2df.5 (𝜑 → Ⅎ𝑥𝜒)
iota2df.6 (𝜑𝑥𝐵)
Assertion
Ref Expression
iota2df (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))

Proof of Theorem iota2df
StepHypRef Expression
1 iota2df.1 . 2 (𝜑𝐵𝑉)
2 iota2df.3 . . 3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
3 simpr 110 . . . 4 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
43eqeq2d 2189 . . 3 ((𝜑𝑥 = 𝐵) → ((℩𝑥𝜓) = 𝑥 ↔ (℩𝑥𝜓) = 𝐵))
52, 4bibi12d 235 . 2 ((𝜑𝑥 = 𝐵) → ((𝜓 ↔ (℩𝑥𝜓) = 𝑥) ↔ (𝜒 ↔ (℩𝑥𝜓) = 𝐵)))
6 iota2df.2 . . 3 (𝜑 → ∃!𝑥𝜓)
7 iota1 5193 . . 3 (∃!𝑥𝜓 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥))
86, 7syl 14 . 2 (𝜑 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥))
9 iota2df.4 . 2 𝑥𝜑
10 iota2df.6 . 2 (𝜑𝑥𝐵)
11 iota2df.5 . . 3 (𝜑 → Ⅎ𝑥𝜒)
12 nfiota1 5181 . . . . 5 𝑥(℩𝑥𝜓)
1312a1i 9 . . . 4 (𝜑𝑥(℩𝑥𝜓))
1413, 10nfeqd 2334 . . 3 (𝜑 → Ⅎ𝑥(℩𝑥𝜓) = 𝐵)
1511, 14nfbid 1588 . 2 (𝜑 → Ⅎ𝑥(𝜒 ↔ (℩𝑥𝜓) = 𝐵))
161, 5, 8, 9, 10, 15vtocldf 2789 1 (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  ∃!weu 2026  wcel 2148  wnfc 2306  cio 5177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-sn 3599  df-pr 3600  df-uni 3811  df-iota 5179
This theorem is referenced by:  iota2d  5204  iota2  5207  riota2df  5851
  Copyright terms: Public domain W3C validator