![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota2df | GIF version |
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
iota2df.4 | ⊢ Ⅎ𝑥𝜑 |
iota2df.5 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
iota2df.6 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
iota2df | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | iota2df.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
3 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
4 | 3 | eqeq2d 2100 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((℩𝑥𝜓) = 𝑥 ↔ (℩𝑥𝜓) = 𝐵)) |
5 | 2, 4 | bibi12d 234 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((𝜓 ↔ (℩𝑥𝜓) = 𝑥) ↔ (𝜒 ↔ (℩𝑥𝜓) = 𝐵))) |
6 | iota2df.2 | . . 3 ⊢ (𝜑 → ∃!𝑥𝜓) | |
7 | iota1 5007 | . . 3 ⊢ (∃!𝑥𝜓 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) |
9 | iota2df.4 | . 2 ⊢ Ⅎ𝑥𝜑 | |
10 | iota2df.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
11 | iota2df.5 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
12 | nfiota1 4995 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥𝜓) | |
13 | 12 | a1i 9 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓)) |
14 | 13, 10 | nfeqd 2244 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓) = 𝐵) |
15 | 11, 14 | nfbid 1526 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
16 | 1, 5, 8, 9, 10, 15 | vtocldf 2671 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1290 Ⅎwnf 1395 ∈ wcel 1439 ∃!weu 1949 Ⅎwnfc 2216 ℩cio 4991 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-sn 3456 df-pr 3457 df-uni 3660 df-iota 4993 |
This theorem is referenced by: iota2d 5018 iota2 5019 riota2df 5642 |
Copyright terms: Public domain | W3C validator |