![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbi | GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfbi.1 | ⊢ Ⅎ𝑥𝜑 |
nfbi.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfbi.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
5 | 2, 4 | nfbid 1599 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
6 | 5 | mptru 1373 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ⊤wtru 1365 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 |
This theorem is referenced by: sb8eu 2055 nfeuv 2060 bm1.1 2178 abbi 2307 nfeq 2344 cleqf 2361 sbhypf 2810 ceqsexg 2889 elabgt 2902 elabgf 2903 copsex2t 4275 copsex2g 4276 opelopabsb 4291 opeliunxp2 4803 ralxpf 4809 rexxpf 4810 cbviota 5221 sb8iota 5223 fmptco 5725 nfiso 5850 uchoice 6192 dfoprab4f 6248 opeliunxp2f 6293 xpf1o 6902 bdsepnfALT 15451 |
Copyright terms: Public domain | W3C validator |