| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbi | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfbi.1 | ⊢ Ⅎ𝑥𝜑 |
| nfbi.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfbi.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1610 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1381 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1373 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 |
| This theorem is referenced by: sb8eu 2066 nfeuv 2071 bm1.1 2189 abbi 2318 nfeq 2355 cleqf 2372 sbhypf 2821 ceqsexg 2900 elabgt 2913 elabgf 2914 copsex2t 4288 copsex2g 4289 opelopabsb 4305 opeliunxp2 4817 ralxpf 4823 rexxpf 4824 cbviota 5236 sb8iota 5238 fmptco 5745 nfiso 5874 uchoice 6222 dfoprab4f 6278 opeliunxp2f 6323 xpf1o 6940 bdsepnfALT 15787 |
| Copyright terms: Public domain | W3C validator |