| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbi | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfbi.1 | ⊢ Ⅎ𝑥𝜑 |
| nfbi.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfbi.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1612 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1382 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 |
| This theorem is referenced by: sb8eu 2068 nfeuv 2073 bm1.1 2192 abbi 2321 nfeq 2358 cleqf 2375 sbhypf 2827 ceqsexg 2908 elabgt 2921 elabgf 2922 copsex2t 4307 copsex2g 4308 opelopabsb 4324 opeliunxp2 4836 ralxpf 4842 rexxpf 4843 cbviota 5256 sb8iota 5258 fmptco 5769 nfiso 5898 uchoice 6246 dfoprab4f 6302 opeliunxp2f 6347 xpf1o 6966 bdsepnfALT 16024 |
| Copyright terms: Public domain | W3C validator |