| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbi | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfbi.1 | ⊢ Ⅎ𝑥𝜑 |
| nfbi.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfbi.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1634 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1404 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1396 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 |
| This theorem is referenced by: sb8eu 2090 nfeuv 2095 bm1.1 2214 abbi 2343 nfeq 2380 cleqf 2397 sbhypf 2850 ceqsexg 2931 elabgt 2944 elabgf 2945 copsex2t 4330 copsex2g 4331 opelopabsb 4347 opeliunxp2 4861 ralxpf 4867 rexxpf 4868 cbviota 5282 sb8iota 5285 fmptco 5800 nfiso 5929 uchoice 6281 dfoprab4f 6337 opeliunxp2f 6382 xpf1o 7001 bdsepnfALT 16210 |
| Copyright terms: Public domain | W3C validator |