| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbi | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, then it is not free in (𝜑 ↔ 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfbi.1 | ⊢ Ⅎ𝑥𝜑 |
| nfbi.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfbi | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfbi.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | nfbid 1611 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | mptru 1382 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 |
| This theorem is referenced by: sb8eu 2067 nfeuv 2072 bm1.1 2190 abbi 2319 nfeq 2356 cleqf 2373 sbhypf 2822 ceqsexg 2901 elabgt 2914 elabgf 2915 copsex2t 4289 copsex2g 4290 opelopabsb 4306 opeliunxp2 4818 ralxpf 4824 rexxpf 4825 cbviota 5237 sb8iota 5239 fmptco 5746 nfiso 5875 uchoice 6223 dfoprab4f 6279 opeliunxp2f 6324 xpf1o 6941 bdsepnfALT 15825 |
| Copyright terms: Public domain | W3C validator |