| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfsbc1 | GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfsbc1.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nfsbc1 | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfsbc1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) | 
| 3 | 2 | nfsbc1d 3006 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑) | 
| 4 | 3 | mptru 1373 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ⊤wtru 1365 Ⅎwnf 1474 Ⅎwnfc 2326 [wsbc 2989 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 | 
| This theorem is referenced by: nfsbc1v 3008 riotass2 5904 riotass 5905 bj-intabssel 15435 | 
| Copyright terms: Public domain | W3C validator |