Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfsbc1 2950 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1437 [wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-sbc 2934 |
This theorem is referenced by: elrabsf 2971 cbvralcsf 3089 cbvrexcsf 3090 euotd 4209 findes 4556 omsinds 4575 elfvmptrab1 5555 ralrnmpt 5602 rexrnmpt 5603 dfopab2 6127 dfoprab3s 6128 mpoxopoveq 6177 findcard2 6823 findcard2s 6824 ac6sfi 6832 indpi 7241 nn0ind-raph 9260 uzind4s 9480 indstr 9483 fzrevral 9985 exfzdc 10117 uzsinds 10319 zsupcllemstep 11805 infssuzex 11809 prmind2 11968 bj-bdfindes 13462 bj-findes 13494 |
Copyright terms: Public domain | W3C validator |