![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfsbc1 2995 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 [wsbc 2977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-sbc 2978 |
This theorem is referenced by: elrabsf 3016 cbvralcsf 3134 cbvrexcsf 3135 euotd 4272 findes 4620 omsinds 4639 elfvmptrab1 5631 ralrnmpt 5679 rexrnmpt 5680 dfopab2 6215 dfoprab3s 6216 mpoxopoveq 6266 findcard2 6918 findcard2s 6919 ac6sfi 6927 dcfi 7011 indpi 7372 nn0ind-raph 9401 uzind4s 9622 indstr 9625 fzrevral 10137 exfzdc 10272 uzsinds 10475 zsupcllemstep 11981 infssuzex 11985 prmind2 12155 bj-bdfindes 15179 bj-findes 15211 |
Copyright terms: Public domain | W3C validator |