| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3007 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 |
| This theorem is referenced by: elrabsf 3028 cbvralcsf 3147 cbvrexcsf 3148 euotd 4287 findes 4639 omsinds 4658 elfvmptrab1 5656 ralrnmpt 5704 rexrnmpt 5705 elovmporab 6123 elovmporab1w 6124 uchoice 6195 dfopab2 6247 dfoprab3s 6248 mpoxopoveq 6298 findcard2 6950 findcard2s 6951 ac6sfi 6959 opabfi 6999 dcfi 7047 indpi 7409 nn0ind-raph 9443 uzind4s 9664 indstr 9667 fzrevral 10180 exfzdc 10316 zsupcllemstep 10319 infssuzex 10323 uzsinds 10536 prmind2 12288 bj-bdfindes 15595 bj-findes 15627 |
| Copyright terms: Public domain | W3C validator |