Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfsbc1 2968 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-sbc 2952 |
This theorem is referenced by: elrabsf 2989 cbvralcsf 3107 cbvrexcsf 3108 euotd 4232 findes 4580 omsinds 4599 elfvmptrab1 5580 ralrnmpt 5627 rexrnmpt 5628 dfopab2 6157 dfoprab3s 6158 mpoxopoveq 6208 findcard2 6855 findcard2s 6856 ac6sfi 6864 dcfi 6946 indpi 7283 nn0ind-raph 9308 uzind4s 9528 indstr 9531 fzrevral 10040 exfzdc 10175 uzsinds 10377 zsupcllemstep 11878 infssuzex 11882 prmind2 12052 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |