| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3046 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-sbc 3029 |
| This theorem is referenced by: elrabsf 3067 cbvralcsf 3187 cbvrexcsf 3188 euotd 4340 findes 4694 omsinds 4713 elfvmptrab1 5728 ralrnmpt 5776 rexrnmpt 5777 elovmporab 6204 elovmporab1w 6205 uchoice 6281 dfopab2 6333 dfoprab3s 6334 mpoxopoveq 6384 findcard2 7047 findcard2s 7048 ac6sfi 7056 opabfi 7096 dcfi 7144 indpi 7525 nn0ind-raph 9560 uzind4s 9781 indstr 9784 fzrevral 10297 exfzdc 10441 zsupcllemstep 10444 infssuzex 10448 uzsinds 10661 prmind2 12637 gropd 15842 grstructd2dom 15843 bj-bdfindes 16270 bj-findes 16302 |
| Copyright terms: Public domain | W3C validator |