| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbc1v | GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1v | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3007 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 |
| This theorem is referenced by: elrabsf 3028 cbvralcsf 3147 cbvrexcsf 3148 euotd 4288 findes 4640 omsinds 4659 elfvmptrab1 5659 ralrnmpt 5707 rexrnmpt 5708 elovmporab 6127 elovmporab1w 6128 uchoice 6204 dfopab2 6256 dfoprab3s 6257 mpoxopoveq 6307 findcard2 6959 findcard2s 6960 ac6sfi 6968 opabfi 7008 dcfi 7056 indpi 7426 nn0ind-raph 9460 uzind4s 9681 indstr 9684 fzrevral 10197 exfzdc 10333 zsupcllemstep 10336 infssuzex 10340 uzsinds 10553 prmind2 12313 bj-bdfindes 15679 bj-findes 15711 |
| Copyright terms: Public domain | W3C validator |