ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotass2 GIF version

Theorem riotass2 5926
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
Assertion
Ref Expression
riotass2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem riotass2
StepHypRef Expression
1 reuss2 3453 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
2 simplr 528 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∀𝑥𝐴 (𝜑𝜓))
3 riotasbc 5915 . . . . 5 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
4 riotacl 5914 . . . . . 6 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
5 rspsbc 3081 . . . . . . 7 ((𝑥𝐴 𝜑) ∈ 𝐴 → (∀𝑥𝐴 (𝜑𝜓) → [(𝑥𝐴 𝜑) / 𝑥](𝜑𝜓)))
6 sbcimg 3040 . . . . . . 7 ((𝑥𝐴 𝜑) ∈ 𝐴 → ([(𝑥𝐴 𝜑) / 𝑥](𝜑𝜓) ↔ ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
75, 6sylibd 149 . . . . . 6 ((𝑥𝐴 𝜑) ∈ 𝐴 → (∀𝑥𝐴 (𝜑𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
84, 7syl 14 . . . . 5 (∃!𝑥𝐴 𝜑 → (∀𝑥𝐴 (𝜑𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
93, 8mpid 42 . . . 4 (∃!𝑥𝐴 𝜑 → (∀𝑥𝐴 (𝜑𝜓) → [(𝑥𝐴 𝜑) / 𝑥]𝜓))
101, 2, 9sylc 62 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → [(𝑥𝐴 𝜑) / 𝑥]𝜓)
111, 4syl 14 . . . . 5 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) ∈ 𝐴)
12 ssel 3187 . . . . . 6 (𝐴𝐵 → ((𝑥𝐴 𝜑) ∈ 𝐴 → (𝑥𝐴 𝜑) ∈ 𝐵))
1312ad2antrr 488 . . . . 5 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ((𝑥𝐴 𝜑) ∈ 𝐴 → (𝑥𝐴 𝜑) ∈ 𝐵))
1411, 13mpd 13 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) ∈ 𝐵)
15 simprr 531 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐵 𝜓)
16 nfriota1 5907 . . . . 5 𝑥(𝑥𝐴 𝜑)
1716nfsbc1 3016 . . . . 5 𝑥[(𝑥𝐴 𝜑) / 𝑥]𝜓
18 sbceq1a 3008 . . . . 5 (𝑥 = (𝑥𝐴 𝜑) → (𝜓[(𝑥𝐴 𝜑) / 𝑥]𝜓))
1916, 17, 18riota2f 5921 . . . 4 (((𝑥𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥𝐵 𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜓 ↔ (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑)))
2014, 15, 19syl2anc 411 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ([(𝑥𝐴 𝜑) / 𝑥]𝜓 ↔ (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑)))
2110, 20mpbid 147 . 2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑))
2221eqcomd 2211 1 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wrex 2485  ∃!wreu 2486  [wsbc 2998  wss 3166  crio 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5232  df-riota 5899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator