ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotass GIF version

Theorem riotass 5711
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotass
StepHypRef Expression
1 reuss 3323 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
2 riotasbc 5699 . . . 4 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
31, 2syl 14 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → [(𝑥𝐴 𝜑) / 𝑥]𝜑)
4 simp1 964 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → 𝐴𝐵)
5 riotacl 5698 . . . . . 6 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
61, 5syl 14 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐴)
74, 6sseldd 3064 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐵)
8 simp3 966 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
9 nfriota1 5691 . . . . 5 𝑥(𝑥𝐴 𝜑)
109nfsbc1 2895 . . . . 5 𝑥[(𝑥𝐴 𝜑) / 𝑥]𝜑
11 sbceq1a 2887 . . . . 5 (𝑥 = (𝑥𝐴 𝜑) → (𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑))
129, 10, 11riota2f 5705 . . . 4 (((𝑥𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
137, 8, 12syl2anc 406 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
143, 13mpbid 146 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑))
1514eqcomd 2120 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 945   = wceq 1314  wcel 1463  wrex 2391  ∃!wreu 2392  [wsbc 2878  wss 3037  crio 5683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-sn 3499  df-pr 3500  df-uni 3703  df-iota 5046  df-riota 5684
This theorem is referenced by:  moriotass  5712
  Copyright terms: Public domain W3C validator