| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > riotass | GIF version | ||
| Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| riotass | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reuss 3444 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 2 | riotasbc 5893 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | 
| 4 | simp1 999 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → 𝐴 ⊆ 𝐵) | |
| 5 | riotacl 5892 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
| 6 | 1, 5 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | 
| 7 | 4, 6 | sseldd 3184 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵) | 
| 8 | simp3 1001 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐵 𝜑) | |
| 9 | nfriota1 5885 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
| 10 | 9 | nfsbc1 3007 | . . . . 5 ⊢ Ⅎ𝑥[(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 | 
| 11 | sbceq1a 2999 | . . . . 5 ⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑)) | |
| 12 | 9, 10, 11 | riota2f 5899 | . . . 4 ⊢ (((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) | 
| 13 | 7, 8, 12 | syl2anc 411 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) | 
| 14 | 3, 13 | mpbid 147 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑)) | 
| 15 | 14 | eqcomd 2202 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∃!wreu 2477 [wsbc 2989 ⊆ wss 3157 ℩crio 5876 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: moriotass 5906 | 
| Copyright terms: Public domain | W3C validator |