![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotass | GIF version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotass | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuss 3323 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | |
2 | riotasbc 5699 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
4 | simp1 964 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → 𝐴 ⊆ 𝐵) | |
5 | riotacl 5698 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
6 | 1, 5 | syl 14 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
7 | 4, 6 | sseldd 3064 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵) |
8 | simp3 966 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐵 𝜑) | |
9 | nfriota1 5691 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
10 | 9 | nfsbc1 2895 | . . . . 5 ⊢ Ⅎ𝑥[(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 |
11 | sbceq1a 2887 | . . . . 5 ⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑)) | |
12 | 9, 10, 11 | riota2f 5705 | . . . 4 ⊢ (((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
13 | 7, 8, 12 | syl2anc 406 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
14 | 3, 13 | mpbid 146 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑)) |
15 | 14 | eqcomd 2120 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 ∃wrex 2391 ∃!wreu 2392 [wsbc 2878 ⊆ wss 3037 ℩crio 5683 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-sn 3499 df-pr 3500 df-uni 3703 df-iota 5046 df-riota 5684 |
This theorem is referenced by: moriotass 5712 |
Copyright terms: Public domain | W3C validator |