| Intuitionistic Logic Explorer Theorem List (p. 31 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rmo4f 3001* | Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
| Theorem | reueq 3002* | Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | rmoan 3003 | Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | ||
| Theorem | rmoim 3004 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | rmoimia 3005 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmoimi2 3006 | Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐵 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 2reuswapdc 3007* | A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (DECID ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | reuind 3008* | Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∀𝑥∀𝑦(((𝐴 ∈ 𝐶 ∧ 𝜑) ∧ (𝐵 ∈ 𝐶 ∧ 𝜓)) → 𝐴 = 𝐵) ∧ ∃𝑥(𝐴 ∈ 𝐶 ∧ 𝜑)) → ∃!𝑧 ∈ 𝐶 ∀𝑥((𝐴 ∈ 𝐶 ∧ 𝜑) → 𝑧 = 𝐴)) | ||
| Theorem | 2rmorex 3009* | Double restricted quantification with "at most one," analogous to 2moex 2164. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | nelrdva 3010* | Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | ||
This is a very useless definition, which "abbreviates" (𝑥 = 𝑦 → 𝜑) as CondEq(𝑥 = 𝑦 → 𝜑). What this display hides, though, is that the first expression, even though it has a shorter constant string, is actually much more complicated in its parse tree: it is parsed as (wi (wceq (cv vx) (cv vy)) wph), while the CondEq version is parsed as (wcdeq vx vy wph). It also allows us to give a name to the specific ternary operation (𝑥 = 𝑦 → 𝜑). This is all used as part of a metatheorem: we want to say that ⊢ (𝑥 = 𝑦 → (𝜑(𝑥) ↔ 𝜑(𝑦))) and ⊢ (𝑥 = 𝑦 → 𝐴(𝑥) = 𝐴(𝑦)) are provable, for any expressions 𝜑(𝑥) or 𝐴(𝑥) in the language. The proof is by induction, so the base case is each of the primitives, which is why you will see a theorem for each of the set.mm primitive operations. The metatheorem comes with a disjoint variables condition: every variable in 𝜑(𝑥) is assumed disjoint from 𝑥 except 𝑥 itself. For such a proof by induction, we must consider each of the possible forms of 𝜑(𝑥). If it is a variable other than 𝑥, then we have CondEq(𝑥 = 𝑦 → 𝐴 = 𝐴) or CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜑)), which is provable by cdeqth 3015 and reflexivity. Since we are only working with class and wff expressions, it can't be 𝑥 itself in set.mm, but if it was we'd have to also prove CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) (where set equality is being used on the right). Otherwise, it is a primitive operation applied to smaller expressions. In these cases, for each setvar variable parameter to the operation, we must consider if it is equal to 𝑥 or not, which yields 2^n proof obligations. Luckily, all primitive operations in set.mm have either zero or one set variable, so we only need to prove one statement for the non-set constructors (like implication) and two for the constructors taking a set (the forall and the class builder). In each of the primitive proofs, we are allowed to assume that 𝑦 is disjoint from 𝜑(𝑥) and vice versa, because this is maintained through the induction. This is how we satisfy the disjoint variable conditions of cdeqab1 3020 and cdeqab 3018. | ||
| Syntax | wcdeq 3011 | Extend wff notation to include conditional equality. This is a technical device used in the proof that Ⅎ is the not-free predicate, and that definitions are conservative as a result. |
| wff CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Definition | df-cdeq 3012 | Define conditional equality. All the notation to the left of the ↔ is fake; the parentheses and arrows are all part of the notation, which could equally well be written CondEq𝑥𝑦𝜑. On the right side is the actual implication arrow. The reason for this definition is to "flatten" the structure on the right side (whose tree structure is something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy wph). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | cdeqi 3013 | Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqri 3014 | Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqth 3015 | Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ 𝜑 ⇒ ⊢ CondEq(𝑥 = 𝑦 → 𝜑) | ||
| Theorem | cdeqnot 3016 | Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
| Theorem | cdeqal 3017* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
| Theorem | cdeqab 3018* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑧 ∣ 𝜑} = {𝑧 ∣ 𝜓}) | ||
| Theorem | cdeqal1 3019* | Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | cdeqab1 3020* | Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}) | ||
| Theorem | cdeqim 3021 | Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ CondEq(𝑥 = 𝑦 → (𝜒 ↔ 𝜃)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
| Theorem | cdeqcv 3022 | Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
| Theorem | cdeqeq 3023 | Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
| Theorem | cdeqel 3024 | Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
| Theorem | nfcdeq 3025* | If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | nfccdeq 3026* | Variation of nfcdeq 3025 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | ru 3027 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4202. (Contributed by NM, 7-Aug-1994.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
| Syntax | wsbc 3028 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑". |
| wff [𝐴 / 𝑥]𝜑 | ||
| Definition | df-sbc 3029 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3054 for our definition, which always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3030 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3030, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3029 in the form of sbc8g 3036. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3029 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfsbcq 3030 |
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 3029 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 3031 instead of df-sbc 3029. (dfsbcq2 3031 is needed because
unlike Quine we do not overload the df-sb 1809 syntax.) As a consequence of
these theorems, we can derive sbc8g 3036, which is a weaker version of
df-sbc 3029 that leaves substitution undefined when 𝐴 is a
proper class.
However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3036, so we will allow direct use of df-sbc 3029. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
| Theorem | dfsbcq2 3031 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1809 and substitution for class variables df-sbc 3029. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3030. (Contributed by NM, 31-Dec-2016.) |
| ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbsbc 3032 | Show that df-sb 1809 and df-sbc 3029 are equivalent when the class term 𝐴 in df-sbc 3029 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1809 for proofs involving df-sbc 3029. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbceq1d 3033 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
| Theorem | sbceq1dd 3034 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
| Theorem | sbceqbid 3035* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbc8g 3036 | This is the closest we can get to df-sbc 3029 if we start from dfsbcq 3030 (see its comments) and dfsbcq2 3031. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
| Theorem | sbcex 3037 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
| Theorem | sbceq1a 3038 | Equality theorem for class substitution. Class version of sbequ12 1817. (Contributed by NM, 26-Sep-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbceq2a 3039 | Equality theorem for class substitution. Class version of sbequ12r 1818. (Contributed by NM, 4-Jan-2017.) |
| ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | spsbc 3040 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1821 and rspsbc 3112. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | spsbcd 3041 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1821 and rspsbc 3112. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcth 3042 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcthdv 3043* | Deduction version of sbcth 3042. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcid 3044 | An identity theorem for substitution. See sbid 1820. (Contributed by Mario Carneiro, 18-Feb-2017.) |
| ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
| Theorem | nfsbc1d 3045 | Deduction version of nfsbc1 3046. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
| Theorem | nfsbc1 3046 | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbc1v 3047* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbcd 3048 | Deduction version of nfsbc 3049. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
| Theorem | nfsbc 3049 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
| Theorem | sbcco 3050* | A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcco2 3051* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbc5 3052* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
| Theorem | sbc6g 3053* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
| Theorem | sbc6 3054* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
| Theorem | sbc7 3055* | An equivalence for class substitution in the spirit of df-clab 2216. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | cbvsbcw 3056* | Version of cbvsbc 3057 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbc 3057 | Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbcv 3058* | Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | sbciegft 3059* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3060.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbciegf 3060* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcieg 3061* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcie2g 3062* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3063 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
| Theorem | sbcie 3063* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
| Theorem | sbciedf 3064* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied 3065* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied2 3066* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | elrabsf 3067 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2957 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | eqsbc1 3068* | Substitution for the left-hand side in an equality. Class version of eqsb1 2333. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | sbcng 3069 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcimg 3070 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcan 3071 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcang 3072 | Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcor 3073 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcorg 3074 | Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcbig 3075 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcn1 3076 | Move negation in and out of class substitution. One direction of sbcng 3069 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcim1 3077 | Distribution of class substitution over implication. One direction of sbcimg 3070 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi1 3078 | Distribution of class substitution over biconditional. One direction of sbcbig 3075 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi2 3079 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcal 3080* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcalg 3081* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbcex2 3082* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcexg 3083* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbceqal 3084* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | sbeqalb 3085* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
| Theorem | sbcbid 3086 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbidv 3087* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbii 3088 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
| Theorem | eqsbc2 3089* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
| Theorem | sbc3an 3090 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcel1v 3091* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | sbcel2gv 3092* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | sbcel21v 3093* | Class substitution into a membership relation. One direction of sbcel2gv 3092 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
| Theorem | sbcimdv 3094* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1503). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbctt 3095 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbcgf 3096 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc19.21g 3097 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcg 3098* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3096. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc2iegf 3099* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
| Theorem | sbc2ie 3100* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |