HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbcbi2 3001 Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcal 3002* Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbcalg 3003* Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
 
Theoremsbcex2 3004* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbcexg 3005* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
 
Theoremsbceqal 3006* A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
(𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
 
Theoremsbeqalb 3007* Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
(𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
 
Theoremsbcbid 3008 Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbidv 3009* Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbii 3010 Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
(𝜑𝜓)       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theoremeqsbc2 3011* Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
 
Theoremsbc3an 3012 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcel1v 3013* Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
 
Theoremsbcel2gv 3014* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
 
Theoremsbcel21v 3015* Class substitution into a membership relation. One direction of sbcel2gv 3014 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
 
Theoremsbcimdv 3016* Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1445). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbctt 3017 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbcgf 3018 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbc19.21g 3019 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcg 3020* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3018. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbc2iegf 3021* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
𝑥𝜓    &   𝑦𝜓    &   𝑥 𝐵𝑊    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
 
Theoremsbc2ie 3022* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
 
Theoremsbc2iedv 3023* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))       (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
 
Theoremsbc3ie 3024* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
 
Theoremsbccomlem 3025* Lemma for sbccom 3026. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom 3026* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbcralt 3027* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrext 3028* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcralg 3029* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrex 3030* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremsbcreug 3031* Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.)
(𝐴𝑉 → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcabel 3032* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
𝑥𝐵       (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 
Theoremrspsbc 3033* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1763 and spsbc 2962. See also rspsbca 3034 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrspsbca 3034* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
 
Theoremrspesbca 3035* Existence form of rspsbca 3034. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 
Theoremspesbc 3036 Existence form of spsbc 2962. (Contributed by Mario Carneiro, 18-Nov-2016.)
([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspesbcd 3037 form of spsbc 2962. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theoremsbcth2 3038* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑥𝐵𝜑)       (𝐴𝐵[𝐴 / 𝑥]𝜑)
 
Theoremra5 3039 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1572. (Contributed by NM, 16-Jan-2004.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremrmo2ilem 3040* Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo2i 3041* Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo3 3042* Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremrmob 3043* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
 
Theoremrmoi 3044* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 3045 Extend class notation to include the proper substitution of a class for a set into another class.
class 𝐴 / 𝑥𝐵
 
Definitiondf-csb 3046* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2951, to prevent ambiguity. Theorem sbcel1g 3064 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3074 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
 
Theoremcsb2 3047* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
 
Theoremcsbeq1 3048 Analog of dfsbcq 2953 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcbvcsbw 3049* Version of cbvcsb 3050 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsb 3050 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsbv 3051* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 
Theoremcsbeq1d 3052 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbid 3053 Analog of sbid 1762 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
𝑥 / 𝑥𝐴 = 𝐴
 
Theoremcsbeq1a 3054 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbco 3055* Composition law for chained substitutions into a class.

Use the weaker csbcow 3056 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.)

𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbcow 3056* Composition law for chained substitutions into a class. Version of csbco 3055 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbtt 3057 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstgf 3058 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.)
𝑥𝐵       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstg 3059* Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3058 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
(𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremsbcel12g 3060 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceqg 3061 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremsbcnel12g 3062 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcne12g 3063 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcel1g 3064* Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
 
Theoremsbceq1g 3065* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremsbcel2g 3066* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceq2g 3067* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremcsbcomg 3068* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
 
Theoremcsbeq2 3069 Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2d 3070 Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝑥𝜑    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2dv 3071* Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2i 3072 Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐵 = 𝐶       𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
 
Theoremcsbvarg 3073 The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
 
Theoremsbccsbg 3074* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
 
Theoremsbccsb2g 3075 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
 
Theoremnfcsb1d 3076 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑𝑥𝐴 / 𝑥𝐵)
 
Theoremnfcsb1 3077 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsb1v 3078* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴 / 𝑥𝐵
 
Theoremnfsbcdw 3079* Version of nfsbcd 2970 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
 
Theoremnfcsbd 3080 Deduction version of nfcsb 3082. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴 / 𝑦𝐵)
 
Theoremnfcsbw 3081* Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3082 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremnfcsb 3082 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremcsbhypf 3083* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2775 for class substitution version. (Contributed by NM, 19-Dec-2008.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebt 3084* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3088.) (Contributed by NM, 11-Nov-2005.)
((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiedf 3085* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐶)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbieb 3086* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
𝐴 ∈ V    &   𝑥𝐶       (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebg 3087* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝐶       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiegf 3088* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝐴𝑉𝑥𝐶)    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbief 3089* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbie 3090* Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbied 3091* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbied2 3092* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)       (𝜑𝐴 / 𝑥𝐶 = 𝐷)
 
Theoremcsbie2t 3093* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3094). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
 
Theoremcsbie2 3094* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)       𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
 
Theoremcsbie2g 3095* Conversion of implicit substitution to explicit class substitution. This version of sbcie 2985 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   (𝑦 = 𝐴𝐶 = 𝐷)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
 
Theoremsbcnestgf 3096 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestgf 3097 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremsbcnestg 3098* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestg 3099* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremcsbnest1g 3100 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >