| Intuitionistic Logic Explorer Theorem List (p. 31 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cdeqim 3001 | Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ CondEq(𝑥 = 𝑦 → (𝜒 ↔ 𝜃)) ⇒ ⊢ CondEq(𝑥 = 𝑦 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
| Theorem | cdeqcv 3002 | Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
| Theorem | cdeqeq 3003 | Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | ||
| Theorem | cdeqel 3004 | Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ CondEq(𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ CondEq(𝑥 = 𝑦 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
| Theorem | nfcdeq 3005* | If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ CondEq(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | nfccdeq 3006* | Variation of nfcdeq 3005 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ CondEq(𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ 𝐴 = 𝐵 | ||
| Theorem | ru 3007 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4181. (Contributed by NM, 7-Aug-1994.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
| Syntax | wsbc 3008 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑". |
| wff [𝐴 / 𝑥]𝜑 | ||
| Definition | df-sbc 3009 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3034 for our definition, which always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3010 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3010, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3009 in the form of sbc8g 3016. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3009 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfsbcq 3010 |
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 3009 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 3011 instead of df-sbc 3009. (dfsbcq2 3011 is needed because
unlike Quine we do not overload the df-sb 1789 syntax.) As a consequence of
these theorems, we can derive sbc8g 3016, which is a weaker version of
df-sbc 3009 that leaves substitution undefined when 𝐴 is a
proper class.
However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3016, so we will allow direct use of df-sbc 3009. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
| Theorem | dfsbcq2 3011 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1789 and substitution for class variables df-sbc 3009. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3010. (Contributed by NM, 31-Dec-2016.) |
| ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbsbc 3012 | Show that df-sb 1789 and df-sbc 3009 are equivalent when the class term 𝐴 in df-sbc 3009 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1789 for proofs involving df-sbc 3009. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbceq1d 3013 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
| Theorem | sbceq1dd 3014 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
| Theorem | sbceqbid 3015* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbc8g 3016 | This is the closest we can get to df-sbc 3009 if we start from dfsbcq 3010 (see its comments) and dfsbcq2 3011. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
| Theorem | sbcex 3017 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
| Theorem | sbceq1a 3018 | Equality theorem for class substitution. Class version of sbequ12 1797. (Contributed by NM, 26-Sep-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbceq2a 3019 | Equality theorem for class substitution. Class version of sbequ12r 1798. (Contributed by NM, 4-Jan-2017.) |
| ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | spsbc 3020 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1801 and rspsbc 3092. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | spsbcd 3021 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1801 and rspsbc 3092. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcth 3022 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcthdv 3023* | Deduction version of sbcth 3022. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcid 3024 | An identity theorem for substitution. See sbid 1800. (Contributed by Mario Carneiro, 18-Feb-2017.) |
| ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
| Theorem | nfsbc1d 3025 | Deduction version of nfsbc1 3026. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
| Theorem | nfsbc1 3026 | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbc1v 3027* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbcd 3028 | Deduction version of nfsbc 3029. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
| Theorem | nfsbc 3029 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
| Theorem | sbcco 3030* | A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcco2 3031* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbc5 3032* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
| Theorem | sbc6g 3033* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
| Theorem | sbc6 3034* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
| Theorem | sbc7 3035* | An equivalence for class substitution in the spirit of df-clab 2196. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | cbvsbcw 3036* | Version of cbvsbc 3037 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbc 3037 | Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbcv 3038* | Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | sbciegft 3039* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3040.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbciegf 3040* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcieg 3041* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcie2g 3042* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3043 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
| Theorem | sbcie 3043* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
| Theorem | sbciedf 3044* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied 3045* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied2 3046* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | elrabsf 3047 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2937 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | eqsbc1 3048* | Substitution for the left-hand side in an equality. Class version of eqsb1 2313. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | sbcng 3049 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcimg 3050 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcan 3051 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcang 3052 | Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcor 3053 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcorg 3054 | Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcbig 3055 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcn1 3056 | Move negation in and out of class substitution. One direction of sbcng 3049 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcim1 3057 | Distribution of class substitution over implication. One direction of sbcimg 3050 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi1 3058 | Distribution of class substitution over biconditional. One direction of sbcbig 3055 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi2 3059 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcal 3060* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcalg 3061* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbcex2 3062* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcexg 3063* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbceqal 3064* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | sbeqalb 3065* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
| Theorem | sbcbid 3066 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbidv 3067* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbii 3068 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
| Theorem | eqsbc2 3069* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
| Theorem | sbc3an 3070 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcel1v 3071* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | sbcel2gv 3072* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | sbcel21v 3073* | Class substitution into a membership relation. One direction of sbcel2gv 3072 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
| Theorem | sbcimdv 3074* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1483). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbctt 3075 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbcgf 3076 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc19.21g 3077 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcg 3078* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3076. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc2iegf 3079* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
| Theorem | sbc2ie 3080* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
| Theorem | sbc2iedv 3081* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | sbc3ie 3082* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
| Theorem | sbccomlem 3083* | Lemma for sbccom 3084. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
| Theorem | sbccom 3084* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcralt 3085* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcrext 3086* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcralg 3087* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcrex 3088* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcreug 3089* | Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | reu8nf 3090* | Restricted uniqueness using implicit substitution. This version of reu8 2979 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | ||
| Theorem | sbcabel 3091* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) | ||
| Theorem | rspsbc 3092* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1801 and spsbc 3020. See also rspsbca 3093 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | rspsbca 3093* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → [𝐴 / 𝑥]𝜑) | ||
| Theorem | rspesbca 3094* | Existence form of rspsbca 3093. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | spesbc 3095 | Existence form of spsbc 3020. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
| Theorem | spesbcd 3096 | form of spsbc 3020. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | sbcth2 3097* | A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | ra5 3098 | Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1610. (Contributed by NM, 16-Jan-2004.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | rmo2ilem 3099* | Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo2i 3100* | Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |