| Intuitionistic Logic Explorer Theorem List (p. 31 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfsbcq 3001 |
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 3000 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 3002 instead of df-sbc 3000. (dfsbcq2 3002 is needed because
unlike Quine we do not overload the df-sb 1787 syntax.) As a consequence of
these theorems, we can derive sbc8g 3007, which is a weaker version of
df-sbc 3000 that leaves substitution undefined when 𝐴 is a
proper class.
However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3007, so we will allow direct use of df-sbc 3000. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
| Theorem | dfsbcq2 3002 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1787 and substitution for class variables df-sbc 3000. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3001. (Contributed by NM, 31-Dec-2016.) |
| ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbsbc 3003 | Show that df-sb 1787 and df-sbc 3000 are equivalent when the class term 𝐴 in df-sbc 3000 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1787 for proofs involving df-sbc 3000. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbceq1d 3004 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
| Theorem | sbceq1dd 3005 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
| Theorem | sbceqbid 3006* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
| Theorem | sbc8g 3007 | This is the closest we can get to df-sbc 3000 if we start from dfsbcq 3001 (see its comments) and dfsbcq2 3002. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
| Theorem | sbcex 3008 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
| Theorem | sbceq1a 3009 | Equality theorem for class substitution. Class version of sbequ12 1795. (Contributed by NM, 26-Sep-2003.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbceq2a 3010 | Equality theorem for class substitution. Class version of sbequ12r 1796. (Contributed by NM, 4-Jan-2017.) |
| ⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | spsbc 3011 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1799 and rspsbc 3082. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | spsbcd 3012 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1799 and rspsbc 3082. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcth 3013 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcthdv 3014* | Deduction version of sbcth 3013. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
| Theorem | sbcid 3015 | An identity theorem for substitution. See sbid 1798. (Contributed by Mario Carneiro, 18-Feb-2017.) |
| ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
| Theorem | nfsbc1d 3016 | Deduction version of nfsbc1 3017. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
| Theorem | nfsbc1 3017 | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbc1v 3018* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
| Theorem | nfsbcd 3019 | Deduction version of nfsbc 3020. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
| Theorem | nfsbc 3020 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
| Theorem | sbcco 3021* | A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcco2 3022* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbc5 3023* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
| Theorem | sbc6g 3024* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
| Theorem | sbc6 3025* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
| Theorem | sbc7 3026* | An equivalence for class substitution in the spirit of df-clab 2193. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | cbvsbcw 3027* | Version of cbvsbc 3028 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbc 3028 | Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | cbvsbcv 3029* | Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
| Theorem | sbciegft 3030* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3031.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbciegf 3031* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcieg 3032* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | sbcie2g 3033* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3034 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
| Theorem | sbcie 3034* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
| Theorem | sbciedf 3035* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied 3036* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | sbcied2 3037* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
| Theorem | elrabsf 3038 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2928 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | eqsbc1 3039* | Substitution for the left-hand side in an equality. Class version of eqsb1 2310. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | sbcng 3040 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcimg 3041 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcan 3042 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcang 3043 | Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcor 3044 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcorg 3045 | Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcbig 3046 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcn1 3047 | Move negation in and out of class substitution. One direction of sbcng 3040 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcim1 3048 | Distribution of class substitution over implication. One direction of sbcimg 3041 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi1 3049 | Distribution of class substitution over biconditional. One direction of sbcbig 3046 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcbi2 3050 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
| Theorem | sbcal 3051* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
| ⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcalg 3052* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbcex2 3053* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
| Theorem | sbcexg 3054* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
| Theorem | sbceqal 3055* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | sbeqalb 3056* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
| Theorem | sbcbid 3057 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbidv 3058* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcbii 3059 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
| Theorem | eqsbc2 3060* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
| Theorem | sbc3an 3061 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbcel1v 3062* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
| Theorem | sbcel2gv 3063* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | sbcel21v 3064* | Class substitution into a membership relation. One direction of sbcel2gv 3063 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| ⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
| Theorem | sbcimdv 3065* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1481). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
| Theorem | sbctt 3066 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbcgf 3067 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc19.21g 3068 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | sbcg 3069* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3067. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
| Theorem | sbc2iegf 3070* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
| Theorem | sbc2ie 3071* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
| Theorem | sbc2iedv 3072* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | sbc3ie 3073* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
| Theorem | sbccomlem 3074* | Lemma for sbccom 3075. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
| Theorem | sbccom 3075* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcralt 3076* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcrext 3077* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcralg 3078* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcrex 3079* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| ⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
| Theorem | sbcreug 3080* | Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | sbcabel 3081* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) | ||
| Theorem | rspsbc 3082* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1799 and spsbc 3011. See also rspsbca 3083 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | rspsbca 3083* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → [𝐴 / 𝑥]𝜑) | ||
| Theorem | rspesbca 3084* | Existence form of rspsbca 3083. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) | ||
| Theorem | spesbc 3085 | Existence form of spsbc 3011. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
| Theorem | spesbcd 3086 | form of spsbc 3011. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | sbcth2 3087* | A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | ra5 3088 | Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1608. (Contributed by NM, 16-Jan-2004.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | rmo2ilem 3089* | Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo2i 3090* | Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rmo3 3091* | Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
| Theorem | rmob 3092* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | ||
| Theorem | rmoi 3093* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) | ||
| Syntax | csb 3094 | Extend class notation to include the proper substitution of a class for a set into another class. |
| class ⦋𝐴 / 𝑥⦌𝐵 | ||
| Definition | df-csb 3095* | Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2999, to prevent ambiguity. Theorem sbcel1g 3113 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3123 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | ||
| Theorem | csb2 3096* | Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.) |
| ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
| Theorem | csbeq1 3097 | Analog of dfsbcq 3001 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
| Theorem | cbvcsbw 3098* | Version of cbvcsb 3099 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
| Theorem | cbvcsb 3099 | Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
| Theorem | cbvcsbv 3100* | Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |