Home | Intuitionistic Logic Explorer Theorem List (p. 31 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sbcbig 3001 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcn1 3002 | Move negation in and out of class substitution. One direction of sbcng 2995 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcim1 3003 | Distribution of class substitution over implication. One direction of sbcimg 2996 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi1 3004 | Distribution of class substitution over biconditional. One direction of sbcbig 3001 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2 3005 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcal 3006* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcalg 3007* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbcex2 3008* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcexg 3009* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbceqal 3010* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbeqalb 3011* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
Theorem | sbcbid 3012 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbidv 3013* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbii 3014 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | eqsbc2 3015* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
Theorem | sbc3an 3016 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcel1v 3017* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | sbcel2gv 3018* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | sbcel21v 3019* | Class substitution into a membership relation. One direction of sbcel2gv 3018 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
Theorem | sbcimdv 3020* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1450). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbctt 3021 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgf 3022 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc19.21g 3023 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcg 3024* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3022. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc2iegf 3025* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
Theorem | sbc2ie 3026* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbc2iedv 3027* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
Theorem | sbc3ie 3028* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
Theorem | sbccomlem 3029* | Lemma for sbccom 3030. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom 3030* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbcralt 3031* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrext 3032* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcralg 3033* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrex 3034* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcreug 3035* | Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcabel 3036* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) | ||
Theorem | rspsbc 3037* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1768 and spsbc 2966. See also rspsbca 3038 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | rspsbca 3038* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → [𝐴 / 𝑥]𝜑) | ||
Theorem | rspesbca 3039* | Existence form of rspsbca 3038. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | spesbc 3040 | Existence form of spsbc 2966. (Contributed by Mario Carneiro, 18-Nov-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
Theorem | spesbcd 3041 | form of spsbc 2966. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | sbcth2 3042* | A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) | ||
Theorem | ra5 3043 | Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1577. (Contributed by NM, 16-Jan-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rmo2ilem 3044* | Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo2i 3045* | Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo3 3046* | Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | rmob 3047* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | ||
Theorem | rmoi 3048* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) | ||
Syntax | csb 3049 | Extend class notation to include the proper substitution of a class for a set into another class. |
class ⦋𝐴 / 𝑥⦌𝐵 | ||
Definition | df-csb 3050* | Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2955, to prevent ambiguity. Theorem sbcel1g 3068 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3078 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | ||
Theorem | csb2 3051* | Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.) |
⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
Theorem | csbeq1 3052 | Analog of dfsbcq 2957 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
Theorem | cbvcsbw 3053* | Version of cbvcsb 3054 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
Theorem | cbvcsb 3054 | Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
Theorem | cbvcsbv 3055* | Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 | ||
Theorem | csbeq1d 3056 | Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
Theorem | csbid 3057 | Analog of sbid 1767 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 | ||
Theorem | csbeq1a 3058 | Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | csbco 3059* |
Composition law for chained substitutions into a class.
Use the weaker csbcow 3060 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.) |
⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | csbcow 3060* | Composition law for chained substitutions into a class. Version of csbco 3059 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | csbtt 3061 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | csbconstgf 3062 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | csbconstg 3063* | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3062 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | sbcel12g 3064 | Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbceqg 3065 | Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcnel12g 3066 | Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcne12g 3067 | Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcel1g 3068* | Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | ||
Theorem | sbceq1g 3069* | Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
Theorem | sbcel2g 3070* | Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbceq2g 3071* | Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | csbcomg 3072* | Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | csbeq2 3073 | Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | csbeq2d 3074 | Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | csbeq2dv 3075* | Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | csbeq2i 3076 | Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝐵 = 𝐶 ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 | ||
Theorem | csbvarg 3077 | The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | ||
Theorem | sbccsbg 3078* | Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) | ||
Theorem | sbccsb2g 3079 | Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | ||
Theorem | nfcsb1d 3080 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | nfcsb1 3081 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | nfcsb1v 3082* | Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | nfsbcdw 3083* | Version of nfsbcd 2974 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfcsbd 3084 | Deduction version of nfcsb 3086. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) | ||
Theorem | nfcsbw 3085* | Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3086 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 | ||
Theorem | nfcsb 3086 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 | ||
Theorem | csbhypf 3087* | Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2779 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) | ||
Theorem | csbiebt 3088* | Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3092.) (Contributed by NM, 11-Nov-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
Theorem | csbiedf 3089* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
Theorem | csbieb 3090* | Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
Theorem | csbiebg 3091* | Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
Theorem | csbiegf 3092* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
Theorem | csbief 3093* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | ||
Theorem | csbie 3094* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | ||
Theorem | csbied 3095* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
Theorem | csbied2 3096* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) | ||
Theorem | csbie2t 3097* | Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3098). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) | ||
Theorem | csbie2 3098* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 | ||
Theorem | csbie2g 3099* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 2989 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) | ||
Theorem | sbcnestgf 3100 | Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |