HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdeqim 3001 Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦 → (𝜑𝜓))    &   CondEq(𝑥 = 𝑦 → (𝜒𝜃))       CondEq(𝑥 = 𝑦 → ((𝜑𝜒) ↔ (𝜓𝜃)))
 
Theoremcdeqcv 3002 Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝑥 = 𝑦)
 
Theoremcdeqeq 3003 Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝐴 = 𝐵)    &   CondEq(𝑥 = 𝑦𝐶 = 𝐷)       CondEq(𝑥 = 𝑦 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremcdeqel 3004 Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
CondEq(𝑥 = 𝑦𝐴 = 𝐵)    &   CondEq(𝑥 = 𝑦𝐶 = 𝐷)       CondEq(𝑥 = 𝑦 → (𝐴𝐶𝐵𝐷))
 
Theoremnfcdeq 3005* If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to , then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that 𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑    &   CondEq(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑𝜓)
 
Theoremnfccdeq 3006* Variation of nfcdeq 3005 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴    &   CondEq(𝑥 = 𝑦𝐴 = 𝐵)       𝐴 = 𝐵
 
2.1.8  Russell's Paradox
 
Theoremru 3007 Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4181. (Contributed by NM, 7-Aug-1994.)

{𝑥𝑥𝑥} ∉ V
 
2.1.9  Proper substitution of classes for sets
 
Syntaxwsbc 3008 Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑".
wff [𝐴 / 𝑥]𝜑
 
Definitiondf-sbc 3009 Define the proper substitution of a class for a set.

When 𝐴 is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3034 for our definition, which always evaluates to true for proper classes.

Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3010 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of 𝜑, and it does not seem possible to express it with a single closed formula.

If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3010, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3009 in the form of sbc8g 3016. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3009 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class.

The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.)

([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
 
Theoremdfsbcq 3010 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3009 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3011 instead of df-sbc 3009. (dfsbcq2 3011 is needed because unlike Quine we do not overload the df-sb 1789 syntax.) As a consequence of these theorems, we can derive sbc8g 3016, which is a weaker version of df-sbc 3009 that leaves substitution undefined when 𝐴 is a proper class.

However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3016, so we will allow direct use of df-sbc 3009. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.)

(𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
 
Theoremdfsbcq2 3011 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1789 and substitution for class variables df-sbc 3009. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3010. (Contributed by NM, 31-Dec-2016.)
(𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
 
Theoremsbsbc 3012 Show that df-sb 1789 and df-sbc 3009 are equivalent when the class term 𝐴 in df-sbc 3009 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1789 for proofs involving df-sbc 3009. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
 
Theoremsbceq1d 3013 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
(𝜑𝐴 = 𝐵)       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜓))
 
Theoremsbceq1dd 3014 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
(𝜑𝐴 = 𝐵)    &   (𝜑[𝐴 / 𝑥]𝜓)       (𝜑[𝐵 / 𝑥]𝜓)
 
Theoremsbceqbid 3015* Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
 
Theoremsbc8g 3016 This is the closest we can get to df-sbc 3009 if we start from dfsbcq 3010 (see its comments) and dfsbcq2 3011. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))
 
Theoremsbcex 3017 By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑥]𝜑𝐴 ∈ V)
 
Theoremsbceq1a 3018 Equality theorem for class substitution. Class version of sbequ12 1797. (Contributed by NM, 26-Sep-2003.)
(𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
 
Theoremsbceq2a 3019 Equality theorem for class substitution. Class version of sbequ12r 1798. (Contributed by NM, 4-Jan-2017.)
(𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremspsbc 3020 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1801 and rspsbc 3092. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
 
Theoremspsbcd 3021 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1801 and rspsbc 3092. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥𝜓)       (𝜑[𝐴 / 𝑥]𝜓)
 
Theoremsbcth 3022 A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
𝜑       (𝐴𝑉[𝐴 / 𝑥]𝜑)
 
Theoremsbcthdv 3023* Deduction version of sbcth 3022. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝜑𝜓)       ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
 
Theoremsbcid 3024 An identity theorem for substitution. See sbid 1800. (Contributed by Mario Carneiro, 18-Feb-2017.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremnfsbc1d 3025 Deduction version of nfsbc1 3026. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)
 
Theoremnfsbc1 3026 Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥[𝐴 / 𝑥]𝜑
 
Theoremnfsbc1v 3027* Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥[𝐴 / 𝑥]𝜑
 
Theoremnfsbcd 3028 Deduction version of nfsbc 3029. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
 
Theoremnfsbc 3029 Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴    &   𝑥𝜑       𝑥[𝐴 / 𝑦]𝜑
 
Theoremsbcco 3030* A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
 
Theoremsbcco2 3031* A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝑥 = 𝑦𝐴 = 𝐵)       ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
 
Theoremsbc5 3032* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 
Theoremsbc6g 3033* An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
 
Theoremsbc6 3034* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))
 
Theoremsbc7 3035* An equivalence for class substitution in the spirit of df-clab 2196. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
 
Theoremcbvsbcw 3036* Version of cbvsbc 3037 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremcbvsbc 3037 Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremcbvsbcv 3038* Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
Theoremsbciegft 3039* Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3040.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbciegf 3040* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbcieg 3041* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
 
Theoremsbcie2g 3042* Conversion of implicit substitution to explicit class substitution. This version of sbcie 3043 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝐴 → (𝜓𝜒))       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜒))
 
Theoremsbcie 3043* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑𝜓)
 
Theoremsbciedf 3044* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremsbcied 3045* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremsbcied2 3046* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
 
Theoremelrabsf 3047 Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2937 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
𝑥𝐵       (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))
 
Theoremeqsbc1 3048* Substitution for the left-hand side in an equality. Class version of eqsb1 2313. (Contributed by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
 
Theoremsbcng 3049 Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
 
Theoremsbcimg 3050 Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcan 3051 Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.)
([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcang 3052 Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcor 3053 Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcorg 3054 Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcbig 3055 Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcn1 3056 Move negation in and out of class substitution. One direction of sbcng 3049 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)
 
Theoremsbcim1 3057 Distribution of class substitution over implication. One direction of sbcimg 3050 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbi1 3058 Distribution of class substitution over biconditional. One direction of sbcbig 3055 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcbi2 3059 Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbcal 3060* Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbcalg 3061* Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
 
Theoremsbcex2 3062* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
 
Theoremsbcexg 3063* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
 
Theoremsbceqal 3064* A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
(𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
 
Theoremsbeqalb 3065* Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
(𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
 
Theoremsbcbid 3066 Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbidv 3067* Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcbii 3068 Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
(𝜑𝜓)       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theoremeqsbc2 3069* Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
 
Theoremsbc3an 3070 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbcel1v 3071* Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
 
Theoremsbcel2gv 3072* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
 
Theoremsbcel21v 3073* Class substitution into a membership relation. One direction of sbcel2gv 3072 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
 
Theoremsbcimdv 3074* Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1483). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
Theoremsbctt 3075 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbcgf 3076 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbc19.21g 3077 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
𝑥𝜑       (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremsbcg 3078* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3076. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
 
Theoremsbc2iegf 3079* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
𝑥𝜓    &   𝑦𝜓    &   𝑥 𝐵𝑊    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
 
Theoremsbc2ie 3080* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
 
Theoremsbc2iedv 3081* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))       (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
 
Theoremsbc3ie 3082* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
 
Theoremsbccomlem 3083* Lemma for sbccom 3084. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom 3084* Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbcralt 3085* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrext 3086* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcralg 3087* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrex 3088* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremsbcreug 3089* Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.)
(𝐴𝑉 → ([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremreu8nf 3090* Restricted uniqueness using implicit substitution. This version of reu8 2979 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.)
𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑤 = 𝑦 → (𝜒𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
 
Theoremsbcabel 3091* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
𝑥𝐵       (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 
Theoremrspsbc 3092* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1801 and spsbc 3020. See also rspsbca 3093 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrspsbca 3093* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
 
Theoremrspesbca 3094* Existence form of rspsbca 3093. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 
Theoremspesbc 3095 Existence form of spsbc 3020. (Contributed by Mario Carneiro, 18-Nov-2016.)
([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspesbcd 3096 form of spsbc 3020. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theoremsbcth2 3097* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑥𝐵𝜑)       (𝐴𝐵[𝐴 / 𝑥]𝜑)
 
Theoremra5 3098 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1610. (Contributed by NM, 16-Jan-2004.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremrmo2ilem 3099* Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo2i 3100* Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >