![]() |
Intuitionistic Logic Explorer Theorem List (p. 31 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sbcid 3001 | An identity theorem for substitution. See sbid 1785. (Contributed by Mario Carneiro, 18-Feb-2017.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | nfsbc1d 3002 | Deduction version of nfsbc1 3003. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
Theorem | nfsbc1 3003 | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbc1v 3004* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbcd 3005 | Deduction version of nfsbc 3006. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbc 3006 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbcco 3007* | A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcco2 3008* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbc5 3009* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc6g 3010* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6 3011* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
Theorem | sbc7 3012* | An equivalence for class substitution in the spirit of df-clab 2180. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | cbvsbcw 3013* | Version of cbvsbc 3014 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbc 3014 | Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcv 3015* | Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | sbciegft 3016* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3017.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegf 3017* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcieg 3018* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcie2g 3019* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3020 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
Theorem | sbcie 3020* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbciedf 3021* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied 3022* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied2 3023* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | elrabsf 3024 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2914 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
Theorem | eqsbc1 3025* | Substitution for the left-hand side in an equality. Class version of eqsb1 2297. (Contributed by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | sbcng 3026 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcimg 3027 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcan 3028 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcang 3029 | Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcor 3030 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcorg 3031 | Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcbig 3032 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcn1 3033 | Move negation in and out of class substitution. One direction of sbcng 3026 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcim1 3034 | Distribution of class substitution over implication. One direction of sbcimg 3027 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi1 3035 | Distribution of class substitution over biconditional. One direction of sbcbig 3032 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2 3036 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcal 3037* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) |
⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcalg 3038* | Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbcex2 3039* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcexg 3040* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) | ||
Theorem | sbceqal 3041* | A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbeqalb 3042* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
Theorem | sbcbid 3043 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbidv 3044* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbii 3045 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | eqsbc2 3046* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
Theorem | sbc3an 3047 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcel1v 3048* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | sbcel2gv 3049* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | sbcel21v 3050* | Class substitution into a membership relation. One direction of sbcel2gv 3049 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
Theorem | sbcimdv 3051* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1468). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbctt 3052 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgf 3053 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc19.21g 3054 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcg 3055* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3053. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc2iegf 3056* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
Theorem | sbc2ie 3057* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbc2iedv 3058* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
Theorem | sbc3ie 3059* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
Theorem | sbccomlem 3060* | Lemma for sbccom 3061. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom 3061* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbcralt 3062* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrext 3063* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcralg 3064* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrex 3065* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcreug 3066* | Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcabel 3067* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) | ||
Theorem | rspsbc 3068* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1786 and spsbc 2997. See also rspsbca 3069 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | rspsbca 3069* | Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → [𝐴 / 𝑥]𝜑) | ||
Theorem | rspesbca 3070* | Existence form of rspsbca 3069. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | spesbc 3071 | Existence form of spsbc 2997. (Contributed by Mario Carneiro, 18-Nov-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
Theorem | spesbcd 3072 | form of spsbc 2997. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | sbcth2 3073* | A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) | ||
Theorem | ra5 3074 | Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1595. (Contributed by NM, 16-Jan-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | rmo2ilem 3075* | Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo2i 3076* | Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo3 3077* | Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | rmob 3078* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | ||
Theorem | rmoi 3079* | Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) | ||
Syntax | csb 3080 | Extend class notation to include the proper substitution of a class for a set into another class. |
class ⦋𝐴 / 𝑥⦌𝐵 | ||
Definition | df-csb 3081* | Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2985, to prevent ambiguity. Theorem sbcel1g 3099 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3109 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | ||
Theorem | csb2 3082* | Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.) |
⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
Theorem | csbeq1 3083 | Analog of dfsbcq 2987 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
Theorem | cbvcsbw 3084* | Version of cbvcsb 3085 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
Theorem | cbvcsb 3085 | Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑦⦌𝐷 | ||
Theorem | cbvcsbv 3086* | Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶 | ||
Theorem | csbeq1d 3087 | Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
Theorem | csbid 3088 | Analog of sbid 1785 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 | ||
Theorem | csbeq1a 3089 | Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | csbco 3090* |
Composition law for chained substitutions into a class.
Use the weaker csbcow 3091 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.) |
⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | csbcow 3091* | Composition law for chained substitutions into a class. Version of csbco 3090 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by GG, 25-Aug-2024.) |
⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | csbtt 3092 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | csbconstgf 3093 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | csbconstg 3094* | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3093 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
Theorem | sbcel12g 3095 | Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbceqg 3096 | Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcnel12g 3097 | Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcne12g 3098 | Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcel1g 3099* | Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | ||
Theorem | sbceq1g 3100* | Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |