Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iun0 | GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
3 | 2 | nrex 2558 | . . . 4 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
4 | eliun 3870 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
5 | 3, 4 | mtbir 661 | . . 3 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
6 | 5, 1 | 2false 691 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ 𝑦 ∈ ∅) |
7 | 6 | eqriv 2162 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∅c0 3409 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-nul 3410 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |