| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iun0 | GIF version | ||
| Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
| 3 | 2 | nrex 2589 | . . . 4 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
| 4 | eliun 3920 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
| 5 | 3, 4 | mtbir 672 | . . 3 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
| 6 | 5, 1 | 2false 702 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ 𝑦 ∈ ∅) |
| 7 | 6 | eqriv 2193 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∅c0 3450 ∪ ciun 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-nul 3451 df-iun 3918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |