ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 GIF version

Theorem iun0 4021
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . . . 6 ¬ 𝑦 ∈ ∅
21a1i 9 . . . . 5 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 2622 . . . 4 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 3968 . . . 4 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 675 . . 3 ¬ 𝑦 𝑥𝐴
65, 12false 706 . 2 (𝑦 𝑥𝐴 ∅ ↔ 𝑦 ∈ ∅)
76eqriv 2226 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wcel 2200  wrex 2509  c0 3491   ciun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-nul 3492  df-iun 3966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator