| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iun0 | GIF version | ||
| Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
| 3 | 2 | nrex 2600 | . . . 4 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
| 4 | eliun 3945 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
| 5 | 3, 4 | mtbir 673 | . . 3 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
| 6 | 5, 1 | 2false 703 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ 𝑦 ∈ ∅) |
| 7 | 6 | eqriv 2204 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 ∅c0 3468 ∪ ciun 3941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-nul 3469 df-iun 3943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |