![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iun0 | GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3450 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
3 | 2 | nrex 2586 | . . . 4 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
4 | eliun 3916 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
5 | 3, 4 | mtbir 672 | . . 3 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
6 | 5, 1 | 2false 702 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ 𝑦 ∈ ∅) |
7 | 6 | eqriv 2190 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ∅c0 3446 ∪ ciun 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-nul 3447 df-iun 3914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |