ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rex0 GIF version

Theorem rex0 3426
Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rex0 ¬ ∃𝑥 ∈ ∅ 𝜑

Proof of Theorem rex0
StepHypRef Expression
1 noel 3413 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 636 . 2 (𝑥 ∈ ∅ → ¬ 𝜑)
32nrex 2558 1 ¬ ∃𝑥 ∈ ∅ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wrex 2445  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  0iun  3923  finexdc  6868  0ct  7072  exfzdc  10175
  Copyright terms: Public domain W3C validator