ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rex0 GIF version

Theorem rex0 3479
Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rex0 ¬ ∃𝑥 ∈ ∅ 𝜑

Proof of Theorem rex0
StepHypRef Expression
1 noel 3465 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → ¬ 𝜑)
32nrex 2599 1 ¬ ∃𝑥 ∈ ∅ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  wrex 2486  c0 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-nul 3462
This theorem is referenced by:  0iun  3987  finexdc  7006  0ct  7216  exfzdc  10376
  Copyright terms: Public domain W3C validator