| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rex0 | GIF version | ||
| Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rex0 | ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 649 | . 2 ⊢ (𝑥 ∈ ∅ → ¬ 𝜑) |
| 3 | 2 | nrex 2622 | 1 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 ∃wrex 2509 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: 0iun 4023 finexdc 7072 0ct 7282 exfzdc 10454 |
| Copyright terms: Public domain | W3C validator |