ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrexdv GIF version

Theorem nrexdv 2587
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrexdv.1 ((𝜑𝑥𝐴) → ¬ 𝜓)
Assertion
Ref Expression
nrexdv (𝜑 → ¬ ∃𝑥𝐴 𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem nrexdv
StepHypRef Expression
1 nrexdv.1 . . 3 ((𝜑𝑥𝐴) → ¬ 𝜓)
21ralrimiva 2567 . 2 (𝜑 → ∀𝑥𝐴 ¬ 𝜓)
3 ralnex 2482 . 2 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
42, 3sylib 122 1 (𝜑 → ¬ ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  wral 2472  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  ltpopr  7655  cauappcvgprlemladdru  7716  cauappcvgprlemladdrl  7717  caucvgprlemladdrl  7738  caucvgprprlemaddq  7768  dvdsle  11986
  Copyright terms: Public domain W3C validator