| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nrexdv | GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 2518 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 122 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: ltpopr 7778 cauappcvgprlemladdru 7839 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 caucvgprprlemaddq 7891 dvdsle 12350 |
| Copyright terms: Public domain | W3C validator |