ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbid GIF version

Theorem oprabbid 5928
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
oprabbid.1 𝑥𝜑
oprabbid.2 𝑦𝜑
oprabbid.3 𝑧𝜑
oprabbid.4 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
oprabbid (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem oprabbid
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oprabbid.1 . . . 4 𝑥𝜑
2 oprabbid.2 . . . . 5 𝑦𝜑
3 oprabbid.3 . . . . . 6 𝑧𝜑
4 oprabbid.4 . . . . . . 7 (𝜑 → (𝜓𝜒))
54anbi2d 464 . . . . . 6 (𝜑 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
63, 5exbid 1616 . . . . 5 (𝜑 → (∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
72, 6exbid 1616 . . . 4 (𝜑 → (∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
81, 7exbid 1616 . . 3 (𝜑 → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)))
98abbidv 2295 . 2 (𝜑 → {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)})
10 df-oprab 5879 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
11 df-oprab 5879 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜒)}
129, 10, 113eqtr4g 2235 1 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  wex 1492  {cab 2163  cop 3596  {coprab 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-oprab 5879
This theorem is referenced by:  oprabbidv  5929  mpoeq123  5934
  Copyright terms: Public domain W3C validator