ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oprab GIF version

Definition df-oprab 5926
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 5925 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 6058. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 vz . . 3 setvar 𝑧
51, 2, 3, 4coprab 5923 . 2 class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
6 vw . . . . . . . . 9 setvar 𝑤
76cv 1363 . . . . . . . 8 class 𝑤
82cv 1363 . . . . . . . . . 10 class 𝑥
93cv 1363 . . . . . . . . . 10 class 𝑦
108, 9cop 3625 . . . . . . . . 9 class 𝑥, 𝑦
114cv 1363 . . . . . . . . 9 class 𝑧
1210, 11cop 3625 . . . . . . . 8 class ⟨⟨𝑥, 𝑦⟩, 𝑧
137, 12wceq 1364 . . . . . . 7 wff 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧
1413, 1wa 104 . . . . . 6 wff (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1514, 4wex 1506 . . . . 5 wff 𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1615, 3wex 1506 . . . 4 wff 𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1716, 2wex 1506 . . 3 wff 𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
1817, 6cab 2182 . 2 class {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
195, 18wceq 1364 1 wff {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
Colors of variables: wff set class
This definition is referenced by:  oprabid  5954  dfoprab2  5969  nfoprab1  5971  nfoprab2  5972  nfoprab3  5973  nfoprab  5974  oprabbid  5975  ssoprab2  5978  mpo0  5992  cbvoprab2  5995  eloprabga  6009  oprabrexex2  6187  eloprabi  6254  cnvoprab  6292  dftpos3  6320
  Copyright terms: Public domain W3C validator