| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2252 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2258 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: rabbidva2 2763 rabeqf 2766 csbeq1 3104 csbeq2 3125 csbeq2d 3126 csbnestgf 3154 difeq1 3292 difeq2 3293 uneq2 3329 ineq2 3376 dfrab3ss 3459 ifeq1 3582 ifeq2 3583 ifbi 3600 pweq 3629 sneq 3654 csbsng 3704 rabsn 3710 preq1 3720 preq2 3721 tpeq1 3729 tpeq2 3730 tpeq3 3731 prprc1 3751 opeq1 3833 opeq2 3834 oteq1 3842 oteq2 3843 oteq3 3844 csbunig 3872 unieq 3873 inteq 3902 iineq1 3955 iineq2 3958 dfiin2g 3974 iinrabm 4004 iinin1m 4011 iinxprg 4016 opabbid 4125 mpteq12f 4140 suceq 4467 xpeq1 4707 xpeq2 4708 csbxpg 4774 csbdmg 4891 rneq 4924 reseq1 4972 reseq2 4973 csbresg 4981 resindm 5020 resmpt 5026 resmptf 5028 imaeq1 5036 imaeq2 5037 mptcnv 5104 csbrng 5163 dmpropg 5174 rnpropg 5181 cores 5205 cores2 5214 xpcom 5248 iotaeq 5259 iotabi 5260 fntpg 5349 funimaexg 5377 fveq1 5598 fveq2 5599 fvres 5623 csbfv12g 5637 fnimapr 5662 fndmin 5710 fprg 5790 fsnunfv 5808 fsnunres 5809 fliftf 5891 isoini2 5911 riotaeqdv 5923 riotabidv 5924 riotauni 5929 riotabidva 5939 snriota 5952 oveq 5973 oveq1 5974 oveq2 5975 oprabbid 6021 mpoeq123 6027 mpoeq123dva 6029 mpoeq3dva 6032 resmpo 6066 ovres 6109 f1ocnvd 6171 ofeqd 6183 ofeq 6184 ofreq 6185 f1od2 6344 ovtposg 6368 recseq 6415 tfr2a 6430 rdgeq1 6480 rdgeq2 6481 freceq1 6501 freceq2 6502 eceq1 6678 eceq2 6680 qseq1 6693 qseq2 6694 uniqs 6703 ecinxp 6720 qsinxp 6721 erovlem 6737 ixpeq1 6819 supeq1 7114 supeq2 7117 supeq3 7118 supeq123d 7119 infeq1 7139 infeq2 7142 infeq3 7143 infeq123d 7144 infisoti 7160 djueq12 7167 acneq 7345 addpiord 7464 mulpiord 7465 00sr 7917 negeq 8300 csbnegg 8305 negsubdi 8363 mulneg1 8502 deceq1 9543 deceq2 9544 xnegeq 9984 fseq1p1m1 10251 frec2uzsucd 10583 frec2uzrdg 10591 frecuzrdgsuc 10596 frecuzrdgg 10598 frecuzrdgsuctlem 10605 seqeq1 10632 seqeq2 10633 seqeq3 10634 seqvalcd 10643 seq3f1olemp 10697 hashprg 10990 s1eq 11111 s1prc 11115 shftdm 11248 resqrexlemfp1 11435 negfi 11654 sumeq1 11781 sumeq2 11785 zsumdc 11810 isumss2 11819 fsumsplitsnun 11845 isumclim3 11849 fisumcom2 11864 isumshft 11916 prodeq1f 11978 prodeq2w 11982 prodeq2 11983 zproddc 12005 fprodm1s 12027 fprodp1s 12028 fprodcom2fi 12052 fprodsplitf 12058 ege2le3 12097 efgt1p2 12121 dfphi2 12657 prmdiveq 12673 pceulem 12732 sloteq 12952 setsslid 12998 ressval2 13013 ecqusaddd 13689 ringidvalg 13838 zrhpropd 14503 metreslem 14967 comet 15086 cnmetdval 15116 dvmptfsum 15312 dvply1 15352 lgsdi 15629 lgseisenlem2 15663 lgsquadlem3 15671 uhgrvtxedgiedgb 15847 redcwlpolemeq1 16195 |
| Copyright terms: Public domain | W3C validator |