| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2241 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2247 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: rabbidva2 2750 rabeqf 2753 csbeq1 3087 csbeq2 3108 csbeq2d 3109 csbnestgf 3137 difeq1 3275 difeq2 3276 uneq2 3312 ineq2 3359 dfrab3ss 3442 ifeq1 3565 ifeq2 3566 ifbi 3582 pweq 3609 sneq 3634 csbsng 3684 rabsn 3690 preq1 3700 preq2 3701 tpeq1 3709 tpeq2 3710 tpeq3 3711 prprc1 3731 opeq1 3809 opeq2 3810 oteq1 3818 oteq2 3819 oteq3 3820 csbunig 3848 unieq 3849 inteq 3878 iineq1 3931 iineq2 3934 dfiin2g 3950 iinrabm 3980 iinin1m 3987 iinxprg 3992 opabbid 4099 mpteq12f 4114 suceq 4438 xpeq1 4678 xpeq2 4679 csbxpg 4745 csbdmg 4861 rneq 4894 reseq1 4941 reseq2 4942 csbresg 4950 resindm 4989 resmpt 4995 resmptf 4997 imaeq1 5005 imaeq2 5006 mptcnv 5073 csbrng 5132 dmpropg 5143 rnpropg 5150 cores 5174 cores2 5183 xpcom 5217 iotaeq 5228 iotabi 5229 fntpg 5315 funimaexg 5343 fveq1 5560 fveq2 5561 fvres 5585 csbfv12g 5599 fnimapr 5624 fndmin 5672 fprg 5748 fsnunfv 5766 fsnunres 5767 fliftf 5849 isoini2 5869 riotaeqdv 5881 riotabidv 5882 riotauni 5887 riotabidva 5897 snriota 5910 oveq 5931 oveq1 5932 oveq2 5933 oprabbid 5979 mpoeq123 5985 mpoeq123dva 5987 mpoeq3dva 5990 resmpo 6024 ovres 6067 f1ocnvd 6129 ofeqd 6141 ofeq 6142 ofreq 6143 f1od2 6302 ovtposg 6326 recseq 6373 tfr2a 6388 rdgeq1 6438 rdgeq2 6439 freceq1 6459 freceq2 6460 eceq1 6636 eceq2 6638 qseq1 6651 qseq2 6652 uniqs 6661 ecinxp 6678 qsinxp 6679 erovlem 6695 ixpeq1 6777 supeq1 7061 supeq2 7064 supeq3 7065 supeq123d 7066 infeq1 7086 infeq2 7089 infeq3 7090 infeq123d 7091 infisoti 7107 djueq12 7114 acneq 7285 addpiord 7400 mulpiord 7401 00sr 7853 negeq 8236 csbnegg 8241 negsubdi 8299 mulneg1 8438 deceq1 9478 deceq2 9479 xnegeq 9919 fseq1p1m1 10186 frec2uzsucd 10510 frec2uzrdg 10518 frecuzrdgsuc 10523 frecuzrdgg 10525 frecuzrdgsuctlem 10532 seqeq1 10559 seqeq2 10560 seqeq3 10561 seqvalcd 10570 seq3f1olemp 10624 hashprg 10917 shftdm 11004 resqrexlemfp1 11191 negfi 11410 sumeq1 11537 sumeq2 11541 zsumdc 11566 isumss2 11575 fsumsplitsnun 11601 isumclim3 11605 fisumcom2 11620 isumshft 11672 prodeq1f 11734 prodeq2w 11738 prodeq2 11739 zproddc 11761 fprodm1s 11783 fprodp1s 11784 fprodcom2fi 11808 fprodsplitf 11814 ege2le3 11853 efgt1p2 11877 dfphi2 12413 prmdiveq 12429 pceulem 12488 sloteq 12708 setsslid 12754 ressval2 12769 ecqusaddd 13444 ringidvalg 13593 zrhpropd 14258 metreslem 14700 comet 14819 cnmetdval 14849 dvmptfsum 15045 dvply1 15085 lgsdi 15362 lgseisenlem2 15396 lgsquadlem3 15404 redcwlpolemeq1 15785 |
| Copyright terms: Public domain | W3C validator |