| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2250 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2256 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: rabbidva2 2759 rabeqf 2762 csbeq1 3096 csbeq2 3117 csbeq2d 3118 csbnestgf 3146 difeq1 3284 difeq2 3285 uneq2 3321 ineq2 3368 dfrab3ss 3451 ifeq1 3574 ifeq2 3575 ifbi 3591 pweq 3619 sneq 3644 csbsng 3694 rabsn 3700 preq1 3710 preq2 3711 tpeq1 3719 tpeq2 3720 tpeq3 3721 prprc1 3741 opeq1 3819 opeq2 3820 oteq1 3828 oteq2 3829 oteq3 3830 csbunig 3858 unieq 3859 inteq 3888 iineq1 3941 iineq2 3944 dfiin2g 3960 iinrabm 3990 iinin1m 3997 iinxprg 4002 opabbid 4109 mpteq12f 4124 suceq 4449 xpeq1 4689 xpeq2 4690 csbxpg 4756 csbdmg 4872 rneq 4905 reseq1 4953 reseq2 4954 csbresg 4962 resindm 5001 resmpt 5007 resmptf 5009 imaeq1 5017 imaeq2 5018 mptcnv 5085 csbrng 5144 dmpropg 5155 rnpropg 5162 cores 5186 cores2 5195 xpcom 5229 iotaeq 5240 iotabi 5241 fntpg 5330 funimaexg 5358 fveq1 5575 fveq2 5576 fvres 5600 csbfv12g 5614 fnimapr 5639 fndmin 5687 fprg 5767 fsnunfv 5785 fsnunres 5786 fliftf 5868 isoini2 5888 riotaeqdv 5900 riotabidv 5901 riotauni 5906 riotabidva 5916 snriota 5929 oveq 5950 oveq1 5951 oveq2 5952 oprabbid 5998 mpoeq123 6004 mpoeq123dva 6006 mpoeq3dva 6009 resmpo 6043 ovres 6086 f1ocnvd 6148 ofeqd 6160 ofeq 6161 ofreq 6162 f1od2 6321 ovtposg 6345 recseq 6392 tfr2a 6407 rdgeq1 6457 rdgeq2 6458 freceq1 6478 freceq2 6479 eceq1 6655 eceq2 6657 qseq1 6670 qseq2 6671 uniqs 6680 ecinxp 6697 qsinxp 6698 erovlem 6714 ixpeq1 6796 supeq1 7088 supeq2 7091 supeq3 7092 supeq123d 7093 infeq1 7113 infeq2 7116 infeq3 7117 infeq123d 7118 infisoti 7134 djueq12 7141 acneq 7314 addpiord 7429 mulpiord 7430 00sr 7882 negeq 8265 csbnegg 8270 negsubdi 8328 mulneg1 8467 deceq1 9508 deceq2 9509 xnegeq 9949 fseq1p1m1 10216 frec2uzsucd 10546 frec2uzrdg 10554 frecuzrdgsuc 10559 frecuzrdgg 10561 frecuzrdgsuctlem 10568 seqeq1 10595 seqeq2 10596 seqeq3 10597 seqvalcd 10606 seq3f1olemp 10660 hashprg 10953 s1eq 11073 s1prc 11077 shftdm 11133 resqrexlemfp1 11320 negfi 11539 sumeq1 11666 sumeq2 11670 zsumdc 11695 isumss2 11704 fsumsplitsnun 11730 isumclim3 11734 fisumcom2 11749 isumshft 11801 prodeq1f 11863 prodeq2w 11867 prodeq2 11868 zproddc 11890 fprodm1s 11912 fprodp1s 11913 fprodcom2fi 11937 fprodsplitf 11943 ege2le3 11982 efgt1p2 12006 dfphi2 12542 prmdiveq 12558 pceulem 12617 sloteq 12837 setsslid 12883 ressval2 12898 ecqusaddd 13574 ringidvalg 13723 zrhpropd 14388 metreslem 14852 comet 14971 cnmetdval 15001 dvmptfsum 15197 dvply1 15237 lgsdi 15514 lgseisenlem2 15548 lgsquadlem3 15556 redcwlpolemeq1 15993 |
| Copyright terms: Public domain | W3C validator |