| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2250 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2256 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: rabbidva2 2759 rabeqf 2762 csbeq1 3096 csbeq2 3117 csbeq2d 3118 csbnestgf 3146 difeq1 3284 difeq2 3285 uneq2 3321 ineq2 3368 dfrab3ss 3451 ifeq1 3574 ifeq2 3575 ifbi 3591 pweq 3619 sneq 3644 csbsng 3694 rabsn 3700 preq1 3710 preq2 3711 tpeq1 3719 tpeq2 3720 tpeq3 3721 prprc1 3741 opeq1 3819 opeq2 3820 oteq1 3828 oteq2 3829 oteq3 3830 csbunig 3858 unieq 3859 inteq 3888 iineq1 3941 iineq2 3944 dfiin2g 3960 iinrabm 3990 iinin1m 3997 iinxprg 4002 opabbid 4110 mpteq12f 4125 suceq 4450 xpeq1 4690 xpeq2 4691 csbxpg 4757 csbdmg 4873 rneq 4906 reseq1 4954 reseq2 4955 csbresg 4963 resindm 5002 resmpt 5008 resmptf 5010 imaeq1 5018 imaeq2 5019 mptcnv 5086 csbrng 5145 dmpropg 5156 rnpropg 5163 cores 5187 cores2 5196 xpcom 5230 iotaeq 5241 iotabi 5242 fntpg 5331 funimaexg 5359 fveq1 5577 fveq2 5578 fvres 5602 csbfv12g 5616 fnimapr 5641 fndmin 5689 fprg 5769 fsnunfv 5787 fsnunres 5788 fliftf 5870 isoini2 5890 riotaeqdv 5902 riotabidv 5903 riotauni 5908 riotabidva 5918 snriota 5931 oveq 5952 oveq1 5953 oveq2 5954 oprabbid 6000 mpoeq123 6006 mpoeq123dva 6008 mpoeq3dva 6011 resmpo 6045 ovres 6088 f1ocnvd 6150 ofeqd 6162 ofeq 6163 ofreq 6164 f1od2 6323 ovtposg 6347 recseq 6394 tfr2a 6409 rdgeq1 6459 rdgeq2 6460 freceq1 6480 freceq2 6481 eceq1 6657 eceq2 6659 qseq1 6672 qseq2 6673 uniqs 6682 ecinxp 6699 qsinxp 6700 erovlem 6716 ixpeq1 6798 supeq1 7090 supeq2 7093 supeq3 7094 supeq123d 7095 infeq1 7115 infeq2 7118 infeq3 7119 infeq123d 7120 infisoti 7136 djueq12 7143 acneq 7316 addpiord 7431 mulpiord 7432 00sr 7884 negeq 8267 csbnegg 8272 negsubdi 8330 mulneg1 8469 deceq1 9510 deceq2 9511 xnegeq 9951 fseq1p1m1 10218 frec2uzsucd 10548 frec2uzrdg 10556 frecuzrdgsuc 10561 frecuzrdgg 10563 frecuzrdgsuctlem 10570 seqeq1 10597 seqeq2 10598 seqeq3 10599 seqvalcd 10608 seq3f1olemp 10662 hashprg 10955 s1eq 11076 s1prc 11080 shftdm 11166 resqrexlemfp1 11353 negfi 11572 sumeq1 11699 sumeq2 11703 zsumdc 11728 isumss2 11737 fsumsplitsnun 11763 isumclim3 11767 fisumcom2 11782 isumshft 11834 prodeq1f 11896 prodeq2w 11900 prodeq2 11901 zproddc 11923 fprodm1s 11945 fprodp1s 11946 fprodcom2fi 11970 fprodsplitf 11976 ege2le3 12015 efgt1p2 12039 dfphi2 12575 prmdiveq 12591 pceulem 12650 sloteq 12870 setsslid 12916 ressval2 12931 ecqusaddd 13607 ringidvalg 13756 zrhpropd 14421 metreslem 14885 comet 15004 cnmetdval 15034 dvmptfsum 15230 dvply1 15270 lgsdi 15547 lgseisenlem2 15581 lgsquadlem3 15589 redcwlpolemeq1 16030 |
| Copyright terms: Public domain | W3C validator |