![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtrid 2222 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | eqtr4di 2228 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: rabbidva2 2725 rabeqf 2728 csbeq1 3061 csbeq2 3082 csbeq2d 3083 csbnestgf 3110 difeq1 3247 difeq2 3248 uneq2 3284 ineq2 3331 dfrab3ss 3414 ifeq1 3538 ifeq2 3539 ifbi 3555 pweq 3579 sneq 3604 csbsng 3654 rabsn 3660 preq1 3670 preq2 3671 tpeq1 3679 tpeq2 3680 tpeq3 3681 prprc1 3701 opeq1 3779 opeq2 3780 oteq1 3788 oteq2 3789 oteq3 3790 csbunig 3818 unieq 3819 inteq 3848 iineq1 3901 iineq2 3904 dfiin2g 3920 iinrabm 3950 iinin1m 3957 iinxprg 3962 opabbid 4069 mpteq12f 4084 suceq 4403 xpeq1 4641 xpeq2 4642 csbxpg 4708 csbdmg 4822 rneq 4855 reseq1 4902 reseq2 4903 csbresg 4911 resindm 4950 resmpt 4956 resmptf 4958 imaeq1 4966 imaeq2 4967 mptcnv 5032 csbrng 5091 dmpropg 5102 rnpropg 5109 cores 5133 cores2 5142 xpcom 5176 iotaeq 5187 iotabi 5188 fntpg 5273 funimaexg 5301 fveq1 5515 fveq2 5516 fvres 5540 csbfv12g 5552 fnimapr 5577 fndmin 5624 fprg 5700 fsnunfv 5718 fsnunres 5719 fliftf 5800 isoini2 5820 riotaeqdv 5832 riotabidv 5833 riotauni 5837 riotabidva 5847 snriota 5860 oveq 5881 oveq1 5882 oveq2 5883 oprabbid 5928 mpoeq123 5934 mpoeq123dva 5936 mpoeq3dva 5939 resmpo 5973 ovres 6014 f1ocnvd 6073 ofeq 6085 ofreq 6086 f1od2 6236 ovtposg 6260 recseq 6307 tfr2a 6322 rdgeq1 6372 rdgeq2 6373 freceq1 6393 freceq2 6394 eceq1 6570 eceq2 6572 qseq1 6583 qseq2 6584 uniqs 6593 ecinxp 6610 qsinxp 6611 erovlem 6627 ixpeq1 6709 supeq1 6985 supeq2 6988 supeq3 6989 supeq123d 6990 infeq1 7010 infeq2 7013 infeq3 7014 infeq123d 7015 infisoti 7031 djueq12 7038 addpiord 7315 mulpiord 7316 00sr 7768 negeq 8150 csbnegg 8155 negsubdi 8213 mulneg1 8352 deceq1 9388 deceq2 9389 xnegeq 9827 fseq1p1m1 10094 frec2uzsucd 10401 frec2uzrdg 10409 frecuzrdgsuc 10414 frecuzrdgg 10416 frecuzrdgsuctlem 10423 seqeq1 10448 seqeq2 10449 seqeq3 10450 seqvalcd 10459 seq3f1olemp 10502 hashprg 10788 shftdm 10831 resqrexlemfp1 11018 negfi 11236 sumeq1 11363 sumeq2 11367 zsumdc 11392 isumss2 11401 fsumsplitsnun 11427 isumclim3 11431 fisumcom2 11446 isumshft 11498 prodeq1f 11560 prodeq2w 11564 prodeq2 11565 zproddc 11587 fprodm1s 11609 fprodp1s 11610 fprodcom2fi 11634 fprodsplitf 11640 ege2le3 11679 efgt1p2 11703 dfphi2 12220 prmdiveq 12236 pceulem 12294 sloteq 12467 setsslid 12513 ressval2 12526 ringidvalg 13144 metreslem 13883 comet 14002 cnmetdval 14032 lgsdi 14441 lgseisenlem2 14454 redcwlpolemeq1 14805 |
Copyright terms: Public domain | W3C validator |