| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2241 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2247 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: rabbidva2 2750 rabeqf 2753 csbeq1 3087 csbeq2 3108 csbeq2d 3109 csbnestgf 3137 difeq1 3274 difeq2 3275 uneq2 3311 ineq2 3358 dfrab3ss 3441 ifeq1 3564 ifeq2 3565 ifbi 3581 pweq 3608 sneq 3633 csbsng 3683 rabsn 3689 preq1 3699 preq2 3700 tpeq1 3708 tpeq2 3709 tpeq3 3710 prprc1 3730 opeq1 3808 opeq2 3809 oteq1 3817 oteq2 3818 oteq3 3819 csbunig 3847 unieq 3848 inteq 3877 iineq1 3930 iineq2 3933 dfiin2g 3949 iinrabm 3979 iinin1m 3986 iinxprg 3991 opabbid 4098 mpteq12f 4113 suceq 4437 xpeq1 4677 xpeq2 4678 csbxpg 4744 csbdmg 4860 rneq 4893 reseq1 4940 reseq2 4941 csbresg 4949 resindm 4988 resmpt 4994 resmptf 4996 imaeq1 5004 imaeq2 5005 mptcnv 5072 csbrng 5131 dmpropg 5142 rnpropg 5149 cores 5173 cores2 5182 xpcom 5216 iotaeq 5227 iotabi 5228 fntpg 5314 funimaexg 5342 fveq1 5557 fveq2 5558 fvres 5582 csbfv12g 5596 fnimapr 5621 fndmin 5669 fprg 5745 fsnunfv 5763 fsnunres 5764 fliftf 5846 isoini2 5866 riotaeqdv 5878 riotabidv 5879 riotauni 5884 riotabidva 5894 snriota 5907 oveq 5928 oveq1 5929 oveq2 5930 oprabbid 5975 mpoeq123 5981 mpoeq123dva 5983 mpoeq3dva 5986 resmpo 6020 ovres 6063 f1ocnvd 6125 ofeqd 6137 ofeq 6138 ofreq 6139 f1od2 6293 ovtposg 6317 recseq 6364 tfr2a 6379 rdgeq1 6429 rdgeq2 6430 freceq1 6450 freceq2 6451 eceq1 6627 eceq2 6629 qseq1 6642 qseq2 6643 uniqs 6652 ecinxp 6669 qsinxp 6670 erovlem 6686 ixpeq1 6768 supeq1 7052 supeq2 7055 supeq3 7056 supeq123d 7057 infeq1 7077 infeq2 7080 infeq3 7081 infeq123d 7082 infisoti 7098 djueq12 7105 addpiord 7383 mulpiord 7384 00sr 7836 negeq 8219 csbnegg 8224 negsubdi 8282 mulneg1 8421 deceq1 9461 deceq2 9462 xnegeq 9902 fseq1p1m1 10169 frec2uzsucd 10493 frec2uzrdg 10501 frecuzrdgsuc 10506 frecuzrdgg 10508 frecuzrdgsuctlem 10515 seqeq1 10542 seqeq2 10543 seqeq3 10544 seqvalcd 10553 seq3f1olemp 10607 hashprg 10900 shftdm 10987 resqrexlemfp1 11174 negfi 11393 sumeq1 11520 sumeq2 11524 zsumdc 11549 isumss2 11558 fsumsplitsnun 11584 isumclim3 11588 fisumcom2 11603 isumshft 11655 prodeq1f 11717 prodeq2w 11721 prodeq2 11722 zproddc 11744 fprodm1s 11766 fprodp1s 11767 fprodcom2fi 11791 fprodsplitf 11797 ege2le3 11836 efgt1p2 11860 dfphi2 12388 prmdiveq 12404 pceulem 12463 sloteq 12683 setsslid 12729 ressval2 12744 ecqusaddd 13368 ringidvalg 13517 zrhpropd 14182 metreslem 14616 comet 14735 cnmetdval 14765 dvmptfsum 14961 dvply1 15001 lgsdi 15278 lgseisenlem2 15312 lgsquadlem3 15320 redcwlpolemeq1 15698 |
| Copyright terms: Public domain | W3C validator |