Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | syl5eq 2210 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | eqtr4di 2216 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: rabbidva2 2712 rabeqf 2715 csbeq1 3047 csbeq2 3068 csbeq2d 3069 csbnestgf 3096 difeq1 3232 difeq2 3233 uneq2 3269 ineq2 3316 dfrab3ss 3399 ifeq1 3522 ifeq2 3523 ifbi 3539 pweq 3561 sneq 3586 csbsng 3636 rabsn 3642 preq1 3652 preq2 3653 tpeq1 3661 tpeq2 3662 tpeq3 3663 prprc1 3683 opeq1 3757 opeq2 3758 oteq1 3766 oteq2 3767 oteq3 3768 csbunig 3796 unieq 3797 inteq 3826 iineq1 3879 iineq2 3882 dfiin2g 3898 iinrabm 3927 iinin1m 3934 iinxprg 3939 opabbid 4046 mpteq12f 4061 suceq 4379 xpeq1 4617 xpeq2 4618 csbxpg 4684 csbdmg 4797 rneq 4830 reseq1 4877 reseq2 4878 csbresg 4886 resindm 4925 resmpt 4931 resmptf 4933 imaeq1 4940 imaeq2 4941 mptcnv 5005 csbrng 5064 dmpropg 5075 rnpropg 5082 cores 5106 cores2 5115 xpcom 5149 iotaeq 5160 iotabi 5161 fntpg 5243 funimaexg 5271 fveq1 5484 fveq2 5485 fvres 5509 csbfv12g 5521 fnimapr 5545 fndmin 5591 fprg 5667 fsnunfv 5685 fsnunres 5686 fliftf 5766 isoini2 5786 riotaeqdv 5798 riotabidv 5799 riotauni 5803 riotabidva 5813 snriota 5826 oveq 5847 oveq1 5848 oveq2 5849 oprabbid 5891 mpoeq123 5897 mpoeq123dva 5899 mpoeq3dva 5902 resmpo 5936 ovres 5977 f1ocnvd 6039 ofeq 6051 ofreq 6052 f1od2 6199 ovtposg 6223 recseq 6270 tfr2a 6285 rdgeq1 6335 rdgeq2 6336 freceq1 6356 freceq2 6357 eceq1 6532 eceq2 6534 qseq1 6545 qseq2 6546 uniqs 6555 ecinxp 6572 qsinxp 6573 erovlem 6589 ixpeq1 6671 supeq1 6947 supeq2 6950 supeq3 6951 supeq123d 6952 infeq1 6972 infeq2 6975 infeq3 6976 infeq123d 6977 infisoti 6993 djueq12 7000 addpiord 7253 mulpiord 7254 00sr 7706 negeq 8087 csbnegg 8092 negsubdi 8150 mulneg1 8289 deceq1 9322 deceq2 9323 xnegeq 9759 fseq1p1m1 10025 frec2uzsucd 10332 frec2uzrdg 10340 frecuzrdgsuc 10345 frecuzrdgg 10347 frecuzrdgsuctlem 10354 seqeq1 10379 seqeq2 10380 seqeq3 10381 seqvalcd 10390 seq3f1olemp 10433 hashprg 10717 shftdm 10760 resqrexlemfp1 10947 negfi 11165 sumeq1 11292 sumeq2 11296 zsumdc 11321 isumss2 11330 fsumsplitsnun 11356 isumclim3 11360 fisumcom2 11375 isumshft 11427 prodeq1f 11489 prodeq2w 11493 prodeq2 11494 zproddc 11516 fprodm1s 11538 fprodp1s 11539 fprodcom2fi 11563 fprodsplitf 11569 ege2le3 11608 efgt1p2 11632 dfphi2 12148 prmdiveq 12164 pceulem 12222 sloteq 12395 setsslid 12440 metreslem 12980 comet 13099 cnmetdval 13129 lgsdi 13538 redcwlpolemeq1 13893 |
Copyright terms: Public domain | W3C validator |