| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtrid 2274 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eqtr4di 2280 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: rabbidva2 2786 rabeqf 2789 csbeq1 3127 csbeq2 3148 csbeq2d 3149 csbnestgf 3177 difeq1 3315 difeq2 3316 uneq2 3352 ineq2 3399 dfrab3ss 3482 ifeq1 3605 ifeq2 3606 ifbi 3623 pweq 3652 sneq 3677 csbsng 3727 rabsn 3733 preq1 3743 preq2 3744 tpeq1 3752 tpeq2 3753 tpeq3 3754 prprc1 3775 opeq1 3857 opeq2 3858 oteq1 3866 oteq2 3867 oteq3 3868 csbunig 3896 unieq 3897 inteq 3926 iineq1 3979 iineq2 3982 dfiin2g 3998 iinrabm 4028 iinin1m 4035 iinxprg 4040 opabbid 4149 mpteq12f 4164 suceq 4493 xpeq1 4733 xpeq2 4734 csbxpg 4800 csbdmg 4917 rneq 4951 reseq1 4999 reseq2 5000 csbresg 5008 resindm 5047 resmpt 5053 resmptf 5055 imaeq1 5063 imaeq2 5064 mptcnv 5131 csbrng 5190 dmpropg 5201 rnpropg 5208 cores 5232 cores2 5241 xpcom 5275 iotaeq 5287 iotabi 5288 fntpg 5377 funimaexg 5405 fveq1 5626 fveq2 5627 fvres 5651 csbfv12g 5667 fnimapr 5694 fndmin 5742 fprg 5822 fsnunfv 5840 fsnunres 5841 fliftf 5923 isoini2 5943 riotaeqdv 5955 riotabidv 5956 riotauni 5961 riotabidva 5972 snriota 5986 oveq 6007 oveq1 6008 oveq2 6009 oprabbid 6057 mpoeq123 6063 mpoeq123dva 6065 mpoeq3dva 6068 resmpo 6102 ovres 6145 f1ocnvd 6208 ofeqd 6220 ofeq 6221 ofreq 6222 f1od2 6381 ovtposg 6405 recseq 6452 tfr2a 6467 rdgeq1 6517 rdgeq2 6518 freceq1 6538 freceq2 6539 eceq1 6715 eceq2 6717 qseq1 6730 qseq2 6731 uniqs 6740 ecinxp 6757 qsinxp 6758 erovlem 6774 ixpeq1 6856 supeq1 7153 supeq2 7156 supeq3 7157 supeq123d 7158 infeq1 7178 infeq2 7181 infeq3 7182 infeq123d 7183 infisoti 7199 djueq12 7206 acneq 7384 addpiord 7503 mulpiord 7504 00sr 7956 negeq 8339 csbnegg 8344 negsubdi 8402 mulneg1 8541 deceq1 9582 deceq2 9583 xnegeq 10023 fseq1p1m1 10290 frec2uzsucd 10623 frec2uzrdg 10631 frecuzrdgsuc 10636 frecuzrdgg 10638 frecuzrdgsuctlem 10645 seqeq1 10672 seqeq2 10673 seqeq3 10674 seqvalcd 10683 seq3f1olemp 10737 hashprg 11030 s1eq 11152 s1prc 11156 s2eqd 11302 s3eqd 11303 s4eqd 11304 s5eqd 11305 s6eqd 11306 s7eqd 11307 s8eqd 11308 shftdm 11333 resqrexlemfp1 11520 negfi 11739 sumeq1 11866 sumeq2 11870 zsumdc 11895 isumss2 11904 fsumsplitsnun 11930 isumclim3 11934 fisumcom2 11949 isumshft 12001 prodeq1f 12063 prodeq2w 12067 prodeq2 12068 zproddc 12090 fprodm1s 12112 fprodp1s 12113 fprodcom2fi 12137 fprodsplitf 12143 ege2le3 12182 efgt1p2 12206 dfphi2 12742 prmdiveq 12758 pceulem 12817 sloteq 13037 setsslid 13083 ressval2 13099 ecqusaddd 13775 ringidvalg 13924 zrhpropd 14590 metreslem 15054 comet 15173 cnmetdval 15203 dvmptfsum 15399 dvply1 15439 lgsdi 15716 lgseisenlem2 15750 lgsquadlem3 15758 uhgrvtxedgiedgb 15941 usgredg2v 16022 redcwlpolemeq1 16422 |
| Copyright terms: Public domain | W3C validator |