![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr4g.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4g | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eqtr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtrid 2222 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | eqtr4di 2228 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: rabbidva2 2724 rabeqf 2727 csbeq1 3060 csbeq2 3081 csbeq2d 3082 csbnestgf 3109 difeq1 3246 difeq2 3247 uneq2 3283 ineq2 3330 dfrab3ss 3413 ifeq1 3537 ifeq2 3538 ifbi 3554 pweq 3578 sneq 3603 csbsng 3653 rabsn 3659 preq1 3669 preq2 3670 tpeq1 3678 tpeq2 3679 tpeq3 3680 prprc1 3700 opeq1 3778 opeq2 3779 oteq1 3787 oteq2 3788 oteq3 3789 csbunig 3817 unieq 3818 inteq 3847 iineq1 3900 iineq2 3903 dfiin2g 3919 iinrabm 3949 iinin1m 3956 iinxprg 3961 opabbid 4068 mpteq12f 4083 suceq 4402 xpeq1 4640 xpeq2 4641 csbxpg 4707 csbdmg 4821 rneq 4854 reseq1 4901 reseq2 4902 csbresg 4910 resindm 4949 resmpt 4955 resmptf 4957 imaeq1 4965 imaeq2 4966 mptcnv 5031 csbrng 5090 dmpropg 5101 rnpropg 5108 cores 5132 cores2 5141 xpcom 5175 iotaeq 5186 iotabi 5187 fntpg 5272 funimaexg 5300 fveq1 5514 fveq2 5515 fvres 5539 csbfv12g 5551 fnimapr 5576 fndmin 5623 fprg 5699 fsnunfv 5717 fsnunres 5718 fliftf 5799 isoini2 5819 riotaeqdv 5831 riotabidv 5832 riotauni 5836 riotabidva 5846 snriota 5859 oveq 5880 oveq1 5881 oveq2 5882 oprabbid 5927 mpoeq123 5933 mpoeq123dva 5935 mpoeq3dva 5938 resmpo 5972 ovres 6013 f1ocnvd 6072 ofeq 6084 ofreq 6085 f1od2 6235 ovtposg 6259 recseq 6306 tfr2a 6321 rdgeq1 6371 rdgeq2 6372 freceq1 6392 freceq2 6393 eceq1 6569 eceq2 6571 qseq1 6582 qseq2 6583 uniqs 6592 ecinxp 6609 qsinxp 6610 erovlem 6626 ixpeq1 6708 supeq1 6984 supeq2 6987 supeq3 6988 supeq123d 6989 infeq1 7009 infeq2 7012 infeq3 7013 infeq123d 7014 infisoti 7030 djueq12 7037 addpiord 7314 mulpiord 7315 00sr 7767 negeq 8149 csbnegg 8154 negsubdi 8212 mulneg1 8351 deceq1 9387 deceq2 9388 xnegeq 9826 fseq1p1m1 10093 frec2uzsucd 10400 frec2uzrdg 10408 frecuzrdgsuc 10413 frecuzrdgg 10415 frecuzrdgsuctlem 10422 seqeq1 10447 seqeq2 10448 seqeq3 10449 seqvalcd 10458 seq3f1olemp 10501 hashprg 10787 shftdm 10830 resqrexlemfp1 11017 negfi 11235 sumeq1 11362 sumeq2 11366 zsumdc 11391 isumss2 11400 fsumsplitsnun 11426 isumclim3 11430 fisumcom2 11445 isumshft 11497 prodeq1f 11559 prodeq2w 11563 prodeq2 11564 zproddc 11586 fprodm1s 11608 fprodp1s 11609 fprodcom2fi 11633 fprodsplitf 11639 ege2le3 11678 efgt1p2 11702 dfphi2 12219 prmdiveq 12235 pceulem 12293 sloteq 12466 setsslid 12512 ressval2 12525 ringidvalg 13142 metreslem 13850 comet 13969 cnmetdval 13999 lgsdi 14408 lgseisenlem2 14421 redcwlpolemeq1 14772 |
Copyright terms: Public domain | W3C validator |