HomeHome Intuitionistic Logic Explorer
Theorem List (p. 60 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5901-6000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisoso 5901 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
 
Theoremf1oiso 5902* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 
Theoremf1oiso2 5903* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}       (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 
2.6.9  Cantor's Theorem
 
Theoremcanth 5904 No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1524 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
𝐴 ∈ V        ¬ 𝐹:𝐴onto→𝒫 𝐴
 
2.6.10  Restricted iota (description binder)
 
Syntaxcrio 5905 Extend class notation with restricted description binder.
class (𝑥𝐴 𝜑)
 
Definitiondf-riota 5906 Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5237. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
 
Theoremriotaeqdv 5907* Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
 
Theoremriotabidv 5908* Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
 
Theoremriotaeqbidv 5909* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
 
Theoremriotaexg 5910* Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
 
Theoremiotaexel 5911* Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.)
((𝐴𝑉 ∧ ∀𝑥(𝜑𝑥𝐴)) → (℩𝑥𝜑) ∈ V)
 
Theoremriotav 5912 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
(𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
 
Theoremriotauni 5913 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
 
Theoremnfriota1 5914* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥(𝑥𝐴 𝜑)
 
Theoremnfriotadxy 5915* Deduction version of nfriota 5916. (Contributed by Jim Kingdon, 12-Jan-2019.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝑦𝐴 𝜓))
 
Theoremnfriota 5916* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
𝑥𝜑    &   𝑥𝐴       𝑥(𝑦𝐴 𝜑)
 
Theoremcbvriota 5917* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcbvriotav 5918* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcsbriotag 5919* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
(𝐴𝑉𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremriotacl2 5920 Membership law for "the unique element in 𝐴 such that 𝜑."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
 
Theoremriotacl 5921* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
 
Theoremriotasbc 5922 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
(∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
 
Theoremriotabidva 5923* Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2761 analog.) (Contributed by NM, 17-Jan-2012.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
 
Theoremriotabiia 5924 Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2758 analog.) (Contributed by NM, 16-Jan-2012.)
(𝑥𝐴 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
 
Theoremriota1 5925* Property of restricted iota. Compare iota1 5251. (Contributed by Mario Carneiro, 15-Oct-2016.)
(∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
 
Theoremriota1a 5926 Property of iota. (Contributed by NM, 23-Aug-2011.)
((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
 
Theoremriota2df 5927* A deduction version of riota2f 5928. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐵)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
 
Theoremriota2f 5928* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐵    &   𝑥𝜓    &   (𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
 
Theoremriota2 5929* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
(𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
 
Theoremriotaprop 5930* Properties of a restricted definite description operator. Todo (df-riota 5906 update): can some uses of riota2f 5928 be shortened with this? (Contributed by NM, 23-Nov-2013.)
𝑥𝜓    &   𝐵 = (𝑥𝐴 𝜑)    &   (𝑥 = 𝐵 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
 
Theoremriota5f 5931* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐵)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
 
Theoremriota5 5932* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
(𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
 
Theoremriotass2 5933* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
(((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
 
Theoremriotass 5934* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 
Theoremmoriotass 5935* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 
Theoremsnriota 5936 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
(∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
 
Theoremeusvobj2 5937* Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
 
Theoremeusvobj1 5938* Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
 
Theoremf1ofveu 5939* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
 
Theoremf1ocnvfv3 5940* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝑥𝐴 (𝐹𝑥) = 𝐶))
 
Theoremriotaund 5941* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
(¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
 
Theoremacexmidlema 5942* Lemma for acexmid 5950. (Contributed by Jim Kingdon, 6-Aug-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       ({∅} ∈ 𝐴𝜑)
 
Theoremacexmidlemb 5943* Lemma for acexmid 5950. (Contributed by Jim Kingdon, 6-Aug-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (∅ ∈ 𝐵𝜑)
 
Theoremacexmidlemph 5944* Lemma for acexmid 5950. (Contributed by Jim Kingdon, 6-Aug-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (𝜑𝐴 = 𝐵)
 
Theoremacexmidlemab 5945* Lemma for acexmid 5950. (Contributed by Jim Kingdon, 6-Aug-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ¬ 𝜑)
 
Theoremacexmidlemcase 5946* Lemma for acexmid 5950. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals , and (3) the choice function evaluated at 𝐴 equals and the choice function evaluated at 𝐵 equals {∅}.

Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (𝑣𝐴𝑢𝑦(𝐴𝑢𝑣𝑢)) and the choice function evaluated at 𝐵 is (𝑣𝐵𝑢𝑦(𝐵𝑢𝑣𝑢)). Other than the difference in notation these work just as (𝑦𝐴) and (𝑦𝐵) would if 𝑦 were a function as defined by df-fun 5278.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵.

(Contributed by Jim Kingdon, 7-Aug-2019.)

𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
 
Theoremacexmidlem1 5947* Lemma for acexmid 5950. List the cases identified in acexmidlemcase 5946 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
 
Theoremacexmidlem2 5948* Lemma for acexmid 5950. This builds on acexmidlem1 5947 by noting that every element of 𝐶 is inhabited.

(Note that 𝑦 is not quite a function in the df-fun 5278 sense because it uses ordered pairs as described in opthreg 4608 rather than df-op 3643).

The set 𝐴 is also found in onsucelsucexmidlem 4581.

(Contributed by Jim Kingdon, 5-Aug-2019.)

𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}    &   𝐶 = {𝐴, 𝐵}       (∀𝑧𝐶𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
 
Theoremacexmidlemv 5949* Lemma for acexmid 5950.

This is acexmid 5950 with additional disjoint variable conditions, most notably between 𝜑 and 𝑥.

(Contributed by Jim Kingdon, 6-Aug-2019.)

𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)       (𝜑 ∨ ¬ 𝜑)
 
Theoremacexmid 5950* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function 𝑦 provides a value when 𝑧 is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7325 and df-exmid 4243 syntaxes, see exmidac 7328. (Contributed by Jim Kingdon, 4-Aug-2019.)

𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)       (𝜑 ∨ ¬ 𝜑)
 
2.6.11  Operations
 
Syntaxco 5951 Extend class notation to include the value of an operation 𝐹 (such as + ) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.
class (𝐴𝐹𝐵)
 
Syntaxcoprab 5952 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Syntaxcmpo 5953 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
class (𝑥𝐴, 𝑦𝐵𝐶)
 
Definitiondf-ov 5954 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5988 and ovprc2 5989. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5955. (Contributed by NM, 28-Feb-1995.)
(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
 
Definitiondf-oprab 5955* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 5954 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 6088. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
 
Definitiondf-mpo 5956* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4111 for two arguments. (Contributed by NM, 17-Feb-2008.)
(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
 
Theoremoveq 5957 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
 
Theoremoveq1 5958 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))
 
Theoremoveq2 5959 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
(𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵))
 
Theoremoveq12 5960 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveq1i 5961 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
𝐴 = 𝐵       (𝐴𝐹𝐶) = (𝐵𝐹𝐶)
 
Theoremoveq2i 5962 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
𝐴 = 𝐵       (𝐶𝐹𝐴) = (𝐶𝐹𝐵)
 
Theoremoveq12i 5963 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐹𝐶) = (𝐵𝐹𝐷)
 
Theoremoveqi 5964 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
𝐴 = 𝐵       (𝐶𝐴𝐷) = (𝐶𝐵𝐷)
 
Theoremoveq123i 5965 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
𝐴 = 𝐶    &   𝐵 = 𝐷    &   𝐹 = 𝐺       (𝐴𝐹𝐵) = (𝐶𝐺𝐷)
 
Theoremoveq1d 5966 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))
 
Theoremoveq2d 5967 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵))
 
Theoremoveqd 5968 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷))
 
Theoremoveq12d 5969 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveqan12d 5970 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveqan12rd 5971 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
 
Theoremoveq123d 5972 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷))
 
Theoremfvoveq1d 5973 Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
Theoremfvoveq1 5974 Equality theorem for nested function and operation value. Closed form of fvoveq1d 5973. (Contributed by AV, 23-Jul-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
Theoremovanraleqv 5975* Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝐵 = 𝑋 → (𝜑𝜓))       (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
 
Theoremimbrov2fvoveq 5976 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
(𝑋 = 𝑌 → (𝜑𝜓))       (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
 
Theoremovrspc2v 5977* If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
(((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶)
 
Theoremoveqrspc2v 5978* Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))       ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
 
Theoremoveqdr 5979 Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.)
(𝜑𝐹 = 𝐺)       ((𝜑𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
 
Theoremnfovd 5980 Deduction version of bound-variable hypothesis builder nfov 5981. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐹)    &   (𝜑𝑥𝐵)       (𝜑𝑥(𝐴𝐹𝐵))
 
Theoremnfov 5981 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐵       𝑥(𝐴𝐹𝐵)
 
Theoremoprabidlem 5982* Slight elaboration of exdistrfor 1824. A lemma for oprabid 5983. (Contributed by Jim Kingdon, 15-Jan-2019.)
(∃𝑥𝑦(𝑥 = 𝑧𝜓) → ∃𝑥(𝑥 = 𝑧 ∧ ∃𝑦𝜓))
 
Theoremoprabid 5983 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Although this theorem would be useful with a distinct variable condition between 𝑥, 𝑦, and 𝑧, we use ax-bndl 1533 to eliminate that constraint. (Contributed by Mario Carneiro, 20-Mar-2013.)
(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
 
Theoremfnovex 5984 The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
 
Theoremovexg 5985 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
 
Theoremovssunirng 5986 The result of an operation value is always a subset of the union of the range. (Contributed by Mario Carneiro, 12-Jan-2017.)
((𝑋𝑉𝑌𝑊) → (𝑋𝐹𝑌) ⊆ ran 𝐹)
 
Theoremovprc 5987 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc1 5988 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
Rel dom 𝐹       𝐴 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremovprc2 5989 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Rel dom 𝐹       𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
 
Theoremcsbov123g 5990 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
(𝐴𝐷𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶))
 
Theoremcsbov12g 5991* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremcsbov1g 5992* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
 
Theoremcsbov2g 5993* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐹𝐴 / 𝑥𝐶))
 
Theoremrspceov 5994* A frequently used special case of rspc2ev 2893 for operation values. (Contributed by NM, 21-Mar-2007.)
((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
 
Theoremfnotovb 5995 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5627. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → ((𝐶𝐹𝐷) = 𝑅 ↔ ⟨𝐶, 𝐷, 𝑅⟩ ∈ 𝐹))
 
Theoremopabbrex 5996* A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))    &   ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)       ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
 
Theorem0neqopab 5997 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theorembrabvv 5998* If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
(𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
 
Theoremdfoprab2 5999* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Theoremreloprab 6000* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >