HomeHome Intuitionistic Logic Explorer
Theorem List (p. 60 of 138)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5901-6000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfmpo2 5901 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑦(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremnfmpo 5902* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑧𝐴    &   𝑧𝐵    &   𝑧𝐶       𝑧(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremmpo0 5903 A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
(𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
 
Theoremoprab4 5904* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremcbvoprab1 5905* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
𝑤𝜑    &   𝑥𝜓    &   (𝑥 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab2 5906* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑤𝜑    &   𝑦𝜓    &   (𝑦 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12 5907* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑤𝜑    &   𝑣𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12v 5908* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab3 5909* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑    &   𝑧𝜓    &   (𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvoprab3v 5910* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvmpox 5911* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 5912 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
𝑧𝐵    &   𝑥𝐷    &   𝑧𝐶    &   𝑤𝐶    &   𝑥𝐸    &   𝑦𝐸    &   (𝑥 = 𝑧𝐵 = 𝐷)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
 
Theoremcbvmpo 5912* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
𝑧𝐶    &   𝑤𝐶    &   𝑥𝐷    &   𝑦𝐷    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremcbvmpov 5913* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4071, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
(𝑥 = 𝑧𝐶 = 𝐸)    &   (𝑦 = 𝑤𝐸 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremdmoprab 5914* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
 
Theoremdmoprabss 5915* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theoremrnoprab 5916* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
 
Theoremrnoprab2 5917* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
 
Theoremreldmoprab 5918* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabss 5919* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
 
Theoremeloprabga 5920* The law of concretion for operation class abstraction. Compare elopab 4230. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
 
Theoremeloprabg 5921* The law of concretion for operation class abstraction. Compare elopab 4230. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
 
Theoremssoprab2i 5922* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremmpov 5923* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
 
Theoremmpomptx 5924* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpompt 5925* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpodifsnif 5926 A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
(𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
 
Theoremmposnif 5927 A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
(𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
 
Theoremfconstmpo 5928* Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremresoprab 5929* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremresoprab2 5930* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
 
Theoremresmpo 5931* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
 
Theoremfunoprabg 5932* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
 
Theoremfunoprab 5933* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
∃*𝑧𝜑       Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremfnoprabg 5934* Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
 
Theoremmpofun 5935* The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Fun 𝐹
 
Theoremfnoprab 5936* Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
(𝜑 → ∃!𝑧𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremffnov 5937* An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
 
Theoremfovcl 5938 Closure law for an operation. (Contributed by NM, 19-Apr-2007.)
𝐹:(𝑅 × 𝑆)⟶𝐶       ((𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremeqfnov 5939* Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
 
Theoremeqfnov2 5940* Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
 
Theoremfnovim 5941* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 16-Jan-2019.)
(𝐹 Fn (𝐴 × 𝐵) → 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
 
Theoremmpo2eqb 5942* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5940. (Contributed by Mario Carneiro, 4-Jan-2017.)
(∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
 
Theoremrnmpo 5943* The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
 
Theoremreldmmpo 5944* The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Rel dom 𝐹
 
Theoremelrnmpog 5945* Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
 
Theoremelrnmpo 5946* Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
 
Theoremralrnmpo 5947* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
 
Theoremrexrnmpo 5948* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
 
Theoremovid 5949* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
 
Theoremovidig 5950* The value of an operation class abstraction. Compare ovidi 5951. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       (𝜑 → (𝑥𝐹𝑦) = 𝑧)
 
Theoremovidi 5951* The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
 
Theoremov 5952* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 
Theoremovigg 5953* The value of an operation class abstraction. Compare ovig 5954. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovig 5954* The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovmpt4g 5955* Value of a function given by the maps-to notation. (This is the operation analog of fvmpt2 5563.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
 
Theoremovmpos 5956* Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
 
Theoremov2gf 5957* The value of an operation class abstraction. A version of ovmpog 5967 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐺    &   𝑦𝑆    &   (𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodxf 5958* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)    &   𝑥𝜑    &   𝑦𝜑    &   𝑦𝐴    &   𝑥𝐵    &   𝑥𝑆    &   𝑦𝑆       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodx 5959* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpod 5960* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpox 5961* The value of an operation class abstraction. Variant of ovmpoga 5962 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   (𝑥 = 𝐴𝐷 = 𝐿)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpoga 5962* Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpoa 5963* Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)    &   𝑆 ∈ V       ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodf 5964* Alternate deduction version of ovmpo 5968, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))    &   𝑥𝐹    &   𝑥𝜓    &   𝑦𝐹    &   𝑦𝜓       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
 
Theoremovmpodv 5965* Alternate deduction version of ovmpo 5968, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
 
Theoremovmpodv2 5966* Alternate deduction version of ovmpo 5968, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
 
Theoremovmpog 5967* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpo 5968* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)    &   𝑆 ∈ V       ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovi3 5969* The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.)
(((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → 𝑆 ∈ (𝐻 × 𝐻))    &   (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑅 = 𝑆)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}       (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆)
 
Theoremov6g 5970* The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
(⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}       (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovg 5971* The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 
Theoremovres 5972 The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
 
Theoremovresd 5973 Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
 
Theoremoprssov 5974 The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
(((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
 
Theoremfovrn 5975 An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremfovrnda 5976 An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)       ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremfovrnd 5977 An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
(𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑆)       (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremfnrnov 5978* The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.)
(𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
 
Theoremfoov 5979* An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
(𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
 
Theoremfnovrn 5980 An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)
 
Theoremovelrn 5981* A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
(𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
 
Theoremfunimassov 5982* Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
 
Theoremovelimab 5983* Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
 
Theoremovconst2 5984 The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
𝐶 ∈ V       ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)
 
Theoremcaovclg 5985* Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)       ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
 
Theoremcaovcld 5986* Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)       (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸)
 
Theoremcaovcl 5987* Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) ∈ 𝑆)       ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
 
Theoremcaovcomg 5988* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
 
Theoremcaovcomd 5989* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)       (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
 
Theoremcaovcom 5990* Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥𝐹𝑦) = (𝑦𝐹𝑥)       (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
 
Theoremcaovassg 5991* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
 
Theoremcaovassd 5992* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
 
Theoremcaovass 5993* Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))       ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
 
Theoremcaovcang 5994* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))       ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
 
Theoremcaovcand 5995* Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))    &   (𝜑𝐴𝑇)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
 
Theoremcaovcanrd 5996* Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))    &   (𝜑𝐴𝑇)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))       (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
 
Theoremcaovcan 5997* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
𝐶 ∈ V    &   ((𝑥𝑆𝑦𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧))       ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶))
 
Theoremcaovordig 5998* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovordid 5999* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
 
Theoremcaovordg 6000* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))       ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800
  Copyright terms: Public domain < Previous  Next >