| Intuitionistic Logic Explorer Theorem List (p. 60 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isoeq4 5901 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| ⊢ (𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵))) | ||
| Theorem | isoeq5 5902 | Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| ⊢ (𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶))) | ||
| Theorem | nfiso 5903 | Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) | ||
| Theorem | isof1o 5904 | An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| Theorem | isorel 5905 | An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) | ||
| Theorem | isoresbr 5906* | A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| ⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) | ||
| Theorem | isoid 5907 | Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| ⊢ ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) | ||
| Theorem | isocnv 5908 | Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | ||
| Theorem | isocnv2 5909 | Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | ||
| Theorem | isores2 5910 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) | ||
| Theorem | isores1 5911 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) | ||
| Theorem | isores3 5912 | Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴 ∧ 𝑋 = (𝐻 “ 𝐾)) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)) | ||
| Theorem | isotr 5913 | Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺 ∘ 𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶)) | ||
| Theorem | iso0 5914 | The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) | ||
| Theorem | isoini 5915 | Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) | ||
| Theorem | isoini2 5916 | Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| ⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) & ⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) ⇒ ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) | ||
| Theorem | isoselem 5917* | Lemma for isose 5918. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑅 Se 𝐴 → 𝑆 Se 𝐵)) | ||
| Theorem | isose 5918 | An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) | ||
| Theorem | isopolem 5919 | Lemma for isopo 5920. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) | ||
| Theorem | isopo 5920 | An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) | ||
| Theorem | isosolem 5921 | Lemma for isoso 5922. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | ||
| Theorem | isoso 5922 | An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) | ||
| Theorem | f1oiso 5923* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.) |
| ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | f1oiso2 5924* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} ⇒ ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | canth 5925 | No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1526 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 | ||
| Syntax | crio 5926 | Extend class notation with restricted description binder. |
| class (℩𝑥 ∈ 𝐴 𝜑) | ||
| Definition | df-riota 5927 | Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5254. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | riotaeqdv 5928* | Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | riotabidv 5929* | Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | riotaeqbidv 5930* | Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | riotaexg 5931* | Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (℩𝑥 ∈ 𝐴 𝜓) ∈ V) | ||
| Theorem | iotaexel 5932* | Set existence of an iota expression in which all values are contained within a set. (Contributed by Jim Kingdon, 28-Jun-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) → (℩𝑥𝜑) ∈ V) | ||
| Theorem | riotav 5933 | An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
| ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) | ||
| Theorem | riotauni 5934 | Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | nfriota1 5935* | The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | nfriotadxy 5936* | Deduction version of nfriota 5937. (Contributed by Jim Kingdon, 12-Jan-2019.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | nfriota 5937* | A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | cbvriotavw 5938* | Change bound variable in a restricted description binder. Version of cbvriotav 5940 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvriota 5939* | Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvriotav 5940* | Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | csbriotag 5941* | Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | riotacl2 5942 |
Membership law for "the unique element in 𝐴 such that 𝜑."
(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | riotacl 5943* | Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | ||
| Theorem | riotasbc 5944 | Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | ||
| Theorem | riotabidva 5945* | Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2767 analog.) (Contributed by NM, 17-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | riotabiia 5946 | Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2764 analog.) (Contributed by NM, 16-Jan-2012.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | riota1 5947* | Property of restricted iota. Compare iota1 5269. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) | ||
| Theorem | riota1a 5948 | Property of iota. (Contributed by NM, 23-Aug-2011.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | ||
| Theorem | riota2df 5949* | A deduction version of riota2f 5950. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | ||
| Theorem | riota2f 5950* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
| Theorem | riota2 5951* | This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
| Theorem | riotaeqimp 5952* | If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
| ⊢ 𝐼 = (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ 𝐽 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = 𝑌) | ||
| Theorem | riotaprop 5953* | Properties of a restricted definite description operator. Todo (df-riota 5927 update): can some uses of riota2f 5950 be shortened with this? (Contributed by NM, 23-Nov-2013.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | ||
| Theorem | riota5f 5954* | A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
| Theorem | riota5 5955* | A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
| Theorem | riotass2 5956* | Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | riotass 5957* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | moriotass 5958* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | snriota 5959 | A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) | ||
| Theorem | eusvobj2 5960* | Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | eusvobj1 5961* | Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | f1ofveu 5962* | There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) | ||
| Theorem | f1ocnvfv3 5963* | Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) | ||
| Theorem | riotaund 5964* | Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
| ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | ||
| Theorem | acexmidlema 5965* | Lemma for acexmid 5973. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ ({∅} ∈ 𝐴 → 𝜑) | ||
| Theorem | acexmidlemb 5966* | Lemma for acexmid 5973. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (∅ ∈ 𝐵 → 𝜑) | ||
| Theorem | acexmidlemph 5967* | Lemma for acexmid 5973. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | acexmidlemab 5968* | Lemma for acexmid 5973. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ¬ 𝜑) | ||
| Theorem | acexmidlemcase 5969* |
Lemma for acexmid 5973. Here we divide the proof into cases (based
on the
disjunction implicit in an unordered pair, not the sort of case
elimination which relies on excluded middle).
The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals ∅, and (3) the choice function evaluated at 𝐴 equals ∅ and the choice function evaluated at 𝐵 equals {∅}. Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (℩𝑣 ∈ 𝐴∃𝑢 ∈ 𝑦(𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) and the choice function evaluated at 𝐵 is (℩𝑣 ∈ 𝐵∃𝑢 ∈ 𝑦(𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)). Other than the difference in notation these work just as (𝑦‘𝐴) and (𝑦‘𝐵) would if 𝑦 were a function as defined by df-fun 5296. Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵. (Contributed by Jim Kingdon, 7-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}))) | ||
| Theorem | acexmidlem1 5970* | Lemma for acexmid 5973. List the cases identified in acexmidlemcase 5969 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (∀𝑧 ∈ 𝐶 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) | ||
| Theorem | acexmidlem2 5971* |
Lemma for acexmid 5973. This builds on acexmidlem1 5970 by noting that every
element of 𝐶 is inhabited.
(Note that 𝑦 is not quite a function in the df-fun 5296 sense because it uses ordered pairs as described in opthreg 4625 rather than df-op 3655). The set 𝐴 is also found in onsucelsucexmidlem 4598. (Contributed by Jim Kingdon, 5-Aug-2019.) |
| ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} & ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} & ⊢ 𝐶 = {𝐴, 𝐵} ⇒ ⊢ (∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) → (𝜑 ∨ ¬ 𝜑)) | ||
| Theorem | acexmidlemv 5972* |
Lemma for acexmid 5973.
This is acexmid 5973 with additional disjoint variable conditions, most notably between 𝜑 and 𝑥. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | acexmid 5973* |
The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function 𝑦 provides a value when 𝑧 is inhabited (as opposed to nonempty as in some statements of the axiom of choice). Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7356 and df-exmid 4258 syntaxes, see exmidac 7359. (Contributed by Jim Kingdon, 4-Aug-2019.) |
| ⊢ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Syntax | co 5974 | Extend class notation to include the value of an operation 𝐹 (such as + ) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. |
| class (𝐴𝐹𝐵) | ||
| Syntax | coprab 5975 | Extend class notation to include class abstraction (class builder) of nested ordered pairs. |
| class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
| Syntax | cmpo 5976 | Extend the definition of a class to include maps-to notation for defining an operation via a rule. |
| class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Definition | df-ov 5977 | Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 6011 and ovprc2 6012. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5978. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | ||
| Definition | df-oprab 5978* | Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 5977 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 6111. (Contributed by NM, 12-Mar-1995.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | ||
| Definition | df-mpo 5979* | Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐵(𝑥, 𝑦)". An extension of df-mpt 4126 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | ||
| Theorem | oveq 5980 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | oveq1 5981 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
| Theorem | oveq2 5982 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
| Theorem | oveq12 5983 | Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
| Theorem | oveq1i 5984 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) | ||
| Theorem | oveq2i 5985 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐹𝐴) = (𝐶𝐹𝐵) | ||
| Theorem | oveq12i 5986 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) | ||
| Theorem | oveqi 5987 | Equality inference for operation value. (Contributed by NM, 24-Nov-2007.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶𝐴𝐷) = (𝐶𝐵𝐷) | ||
| Theorem | oveq123i 5988 | Equality inference for operation value. (Contributed by FL, 11-Jul-2010.) |
| ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 & ⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐴𝐹𝐵) = (𝐶𝐺𝐷) | ||
| Theorem | oveq1d 5989 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
| Theorem | oveq2d 5990 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
| Theorem | oveqd 5991 | Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶𝐴𝐷) = (𝐶𝐵𝐷)) | ||
| Theorem | oveq12d 5992 | Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
| Theorem | oveqan12d 5993 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
| Theorem | oveqan12rd 5994 | Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
| Theorem | oveq123d 5995 | Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) | ||
| Theorem | fvoveq1d 5996 | Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
| Theorem | fvoveq1 5997 | Equality theorem for nested function and operation value. Closed form of fvoveq1d 5996. (Contributed by AV, 23-Jul-2022.) |
| ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | ||
| Theorem | ovanraleqv 5998* | Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
| ⊢ (𝐵 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 = 𝑋 → (∀𝑥 ∈ 𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥 ∈ 𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶))) | ||
| Theorem | imbrov2fvoveq 5999 | Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
| ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) | ||
| Theorem | ovrspc2v 6000* | If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |