ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab GIF version

Theorem nfoprab 5974
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
Hypothesis
Ref Expression
nfoprab.1 𝑤𝜑
Assertion
Ref Expression
nfoprab 𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑤   𝑦,𝑤   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem nfoprab
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5926 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfv 1542 . . . . . . 7 𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧
3 nfoprab.1 . . . . . . 7 𝑤𝜑
42, 3nfan 1579 . . . . . 6 𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
54nfex 1651 . . . . 5 𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
65nfex 1651 . . . 4 𝑤𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
76nfex 1651 . . 3 𝑤𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
87nfab 2344 . 2 𝑤{𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
91, 8nfcxfr 2336 1 𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wnf 1474  wex 1506  {cab 2182  wnfc 2326  cop 3625  {coprab 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-oprab 5926
This theorem is referenced by:  nfmpo  5991
  Copyright terms: Public domain W3C validator