| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfoprab | GIF version | ||
| Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfoprab.1 | ⊢ Ⅎ𝑤𝜑 |
| Ref | Expression |
|---|---|
| nfoprab | ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oprab 5971 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
| 2 | nfv 1552 | . . . . . . 7 ⊢ Ⅎ𝑤 𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
| 3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎ𝑤𝜑 | |
| 4 | 2, 3 | nfan 1589 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 5 | 4 | nfex 1661 | . . . . 5 ⊢ Ⅎ𝑤∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 6 | 5 | nfex 1661 | . . . 4 ⊢ Ⅎ𝑤∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 7 | 6 | nfex 1661 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
| 8 | 7 | nfab 2355 | . 2 ⊢ Ⅎ𝑤{𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 9 | 1, 8 | nfcxfr 2347 | 1 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 {cab 2193 Ⅎwnfc 2337 〈cop 3646 {coprab 5968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-oprab 5971 |
| This theorem is referenced by: nfmpo 6037 |
| Copyright terms: Public domain | W3C validator |