Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfoprab | GIF version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
nfoprab | ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5846 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfv 1516 | . . . . . . 7 ⊢ Ⅎ𝑤 𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 | |
3 | nfoprab.1 | . . . . . . 7 ⊢ Ⅎ𝑤𝜑 | |
4 | 2, 3 | nfan 1553 | . . . . . 6 ⊢ Ⅎ𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
5 | 4 | nfex 1625 | . . . . 5 ⊢ Ⅎ𝑤∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
6 | 5 | nfex 1625 | . . . 4 ⊢ Ⅎ𝑤∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
7 | 6 | nfex 1625 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
8 | 7 | nfab 2313 | . 2 ⊢ Ⅎ𝑤{𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
9 | 1, 8 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 {cab 2151 Ⅎwnfc 2295 〈cop 3579 {coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-oprab 5846 |
This theorem is referenced by: nfmpo 5911 |
Copyright terms: Public domain | W3C validator |