ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbidv GIF version

Theorem oprabbidv 5791
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
oprabbidv (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
Distinct variable groups:   𝑥,𝑧,𝜑   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1491 . 2 𝑥𝜑
2 nfv 1491 . 2 𝑦𝜑
3 nfv 1491 . 2 𝑧𝜑
4 oprabbidv.1 . 2 (𝜑 → (𝜓𝜒))
51, 2, 3, 4oprabbid 5790 1 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-oprab 5744
This theorem is referenced by:  oprabbii  5792  mpoeq123dva  5798  mpoeq3dva  5801  resoprab2  5834  erovlem  6487
  Copyright terms: Public domain W3C validator