| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabbidv | GIF version | ||
| Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) |
| Ref | Expression |
|---|---|
| oprabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| oprabbidv | ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfv 1542 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 4 | oprabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 1, 2, 3, 4 | oprabbid 5975 | 1 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {coprab 5923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-oprab 5926 |
| This theorem is referenced by: oprabbii 5977 mpoeq123dva 5983 mpoeq3dva 5986 resoprab2 6019 erovlem 6686 |
| Copyright terms: Public domain | W3C validator |