Step | Hyp | Ref
| Expression |
1 | | orass 757 |
. . 3
⊢ (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))) |
2 | | anass 399 |
. . . . . 6
⊢ (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
3 | 2 | a1i 9 |
. . . . 5
⊢ (𝑥 ∈ ℕ → (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)))) |
4 | 3 | rabbiia 2711 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} |
5 | 4 | infeq1i 6978 |
. . 3
⊢
inf({𝑥 ∈
ℕ ∣ ((𝑁 ∥
𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) |
6 | 1, 5 | ifbieq2i 3543 |
. 2
⊢
if(((𝑁 = 0 ∨
𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) |
7 | | lcmcl 12004 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
8 | 7 | 3adant3 1007 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
9 | 8 | nn0zd 9311 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ) |
10 | | simp3 989 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈
ℤ) |
11 | | lcmval 11995 |
. . . 4
⊢ (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
12 | 9, 10, 11 | syl2anc 409 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
13 | | lcmeq0 12003 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
14 | 13 | 3adant3 1007 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
15 | 14 | orbi1d 781 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0))) |
16 | 15 | bicomd 140 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0))) |
17 | | nnz 9210 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
18 | 17 | adantl 275 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
ℤ) |
19 | | simp1 987 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈
ℤ) |
20 | 19 | adantr 274 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℤ) |
21 | | simpl2 991 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈
ℤ) |
22 | | lcmdvdsb 12016 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
23 | 18, 20, 21, 22 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
24 | 23 | anbi1d 461 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
25 | 24 | rabbidva 2714 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}) |
26 | 25 | infeq1d 6977 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) |
27 | 16, 26 | ifbieq2d 3544 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
28 | 12, 27 | eqtr4d 2201 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
29 | | lcmcl 12004 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
30 | 29 | 3adant1 1005 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
31 | 30 | nn0zd 9311 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ) |
32 | | lcmval 11995 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
33 | 19, 31, 32 | syl2anc 409 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
34 | | lcmeq0 12003 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
35 | 34 | 3adant1 1005 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
36 | 35 | orbi2d 780 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))) |
37 | 36 | bicomd 140 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0))) |
38 | 10 | adantr 274 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈
ℤ) |
39 | | lcmdvdsb 12016 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
40 | 18, 21, 38, 39 | syl3anc 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
41 | 40 | anbi2d 460 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥))) |
42 | 41 | rabbidva 2714 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}) |
43 | 42 | infeq1d 6977 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )) |
44 | 37, 43 | ifbieq2d 3544 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
45 | 33, 44 | eqtr4d 2201 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ))) |
46 | 6, 28, 45 | 3eqtr4a 2225 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃))) |