ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirr GIF version

Theorem elirr 4518
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4514, we could redefine Ord 𝐴 (df-iord 4344) to also require E Fr 𝐴 (df-frind 4310) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4519 (which under that definition would presumably not need ax-setind 4514 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4519. To encourage ordirr 4519 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

Assertion
Ref Expression
elirr ¬ 𝐴𝐴

Proof of Theorem elirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 3707 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴}))
2 simp1 987 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴𝐴)
3 eleq1 2229 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
4 eleq1 2229 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
53, 4imbi12d 233 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ((𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
65spcgv 2813 . . . . . . . . . . . . . 14 (𝐴𝑥 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
76pm2.43b 52 . . . . . . . . . . . . 13 (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
873ad2ant2 1009 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
9 eleq2 2230 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
109imbi1d 230 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
11103ad2ant3 1010 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
128, 11mpbid 146 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝐴𝐴 ∈ (V ∖ {𝐴})))
132, 12mpd 13 . . . . . . . . . 10 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴}))
14133expia 1195 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴𝐴 ∈ (V ∖ {𝐴})))
151, 14mtod 653 . . . . . . . 8 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴)
16 vex 2729 . . . . . . . . . 10 𝑥 ∈ V
17 eldif 3125 . . . . . . . . . 10 (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴}))
1816, 17mpbiran 930 . . . . . . . . 9 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴})
19 velsn 3593 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2018, 19xchbinx 672 . . . . . . . 8 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴)
2115, 20sylibr 133 . . . . . . 7 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴}))
2221ex 114 . . . . . 6 (𝐴𝐴 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
2322alrimiv 1862 . . . . 5 (𝐴𝐴 → ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
24 df-ral 2449 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})))
25 clelsb1 2271 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴}))
2625imbi2i 225 . . . . . . . . 9 ((𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2726albii 1458 . . . . . . . 8 (∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2824, 27bitri 183 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2928imbi1i 237 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3029albii 1458 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3123, 30sylibr 133 . . . 4 (𝐴𝐴 → ∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})))
32 ax-setind 4514 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
3331, 32syl 14 . . 3 (𝐴𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
34 eleq1 2229 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
3534spcgv 2813 . . 3 (𝐴𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴})))
3633, 35mpd 13 . 2 (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))
37 neldifsnd 3707 . 2 (𝐴𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴}))
3836, 37pm2.65i 629 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968  wal 1341   = wceq 1343  [wsb 1750  wcel 2136  wral 2444  Vcvv 2726  cdif 3113  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-sn 3582
This theorem is referenced by:  ordirr  4519  elirrv  4525  sucprcreg  4526  ordsoexmid  4539  onnmin  4545  ssnel  4546  ordtri2or2exmid  4548  reg3exmidlemwe  4556  nntri2  6462  nntri3  6465  nndceq  6467  nndcel  6468  phpelm  6832  fiunsnnn  6847  onunsnss  6882  snon0  6901
  Copyright terms: Public domain W3C validator