| Step | Hyp | Ref
 | Expression | 
| 1 |   | neldifsnd 3753 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴})) | 
| 2 |   | simp1 999 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) | 
| 3 |   | eleq1 2259 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | 
| 4 |   | eleq1 2259 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) | 
| 5 | 3, 4 | imbi12d 234 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) | 
| 6 | 5 | spcgv 2851 | 
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑥 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) | 
| 7 | 6 | pm2.43b 52 | 
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) | 
| 8 | 7 | 3ad2ant2 1021 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) | 
| 9 |   | eleq2 2260 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | 
| 10 | 9 | imbi1d 231 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) | 
| 11 | 10 | 3ad2ant3 1022 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) | 
| 12 | 8, 11 | mpbid 147 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) | 
| 13 | 2, 12 | mpd 13 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴})) | 
| 14 | 13 | 3expia 1207 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) | 
| 15 | 1, 14 | mtod 664 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴) | 
| 16 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑥 ∈ V | 
| 17 |   | eldif 3166 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴})) | 
| 18 | 16, 17 | mpbiran 942 | 
. . . . . . . . 9
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴}) | 
| 19 |   | velsn 3639 | 
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | 
| 20 | 18, 19 | xchbinx 683 | 
. . . . . . . 8
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴) | 
| 21 | 15, 20 | sylibr 134 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴})) | 
| 22 | 21 | ex 115 | 
. . . . . 6
⊢ (𝐴 ∈ 𝐴 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) | 
| 23 | 22 | alrimiv 1888 | 
. . . . 5
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) | 
| 24 |   | df-ral 2480 | 
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}))) | 
| 25 |   | clelsb1 2301 | 
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴})) | 
| 26 | 25 | imbi2i 226 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) | 
| 27 | 26 | albii 1484 | 
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) | 
| 28 | 24, 27 | bitri 184 | 
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) | 
| 29 | 28 | imbi1i 238 | 
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) | 
| 30 | 29 | albii 1484 | 
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) | 
| 31 | 23, 30 | sylibr 134 | 
. . . 4
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴}))) | 
| 32 |   | ax-setind 4573 | 
. . . 4
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) | 
| 33 | 31, 32 | syl 14 | 
. . 3
⊢ (𝐴 ∈ 𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) | 
| 34 |   | eleq1 2259 | 
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) | 
| 35 | 34 | spcgv 2851 | 
. . 3
⊢ (𝐴 ∈ 𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴}))) | 
| 36 | 33, 35 | mpd 13 | 
. 2
⊢ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})) | 
| 37 |   | neldifsnd 3753 | 
. 2
⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴})) | 
| 38 | 36, 37 | pm2.65i 640 | 
1
⊢  ¬
𝐴 ∈ 𝐴 |