ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirr GIF version

Theorem elirr 4593
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4589, we could redefine Ord 𝐴 (df-iord 4417) to also require E Fr 𝐴 (df-frind 4383) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4594 (which under that definition would presumably not need ax-setind 4589 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4594. To encourage ordirr 4594 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

Assertion
Ref Expression
elirr ¬ 𝐴𝐴

Proof of Theorem elirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 3766 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴}))
2 simp1 1000 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴𝐴)
3 eleq1 2269 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
4 eleq1 2269 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
53, 4imbi12d 234 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ((𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
65spcgv 2861 . . . . . . . . . . . . . 14 (𝐴𝑥 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
76pm2.43b 52 . . . . . . . . . . . . 13 (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
873ad2ant2 1022 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
9 eleq2 2270 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
109imbi1d 231 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
11103ad2ant3 1023 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
128, 11mpbid 147 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝐴𝐴 ∈ (V ∖ {𝐴})))
132, 12mpd 13 . . . . . . . . . 10 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴}))
14133expia 1208 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴𝐴 ∈ (V ∖ {𝐴})))
151, 14mtod 665 . . . . . . . 8 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴)
16 vex 2776 . . . . . . . . . 10 𝑥 ∈ V
17 eldif 3176 . . . . . . . . . 10 (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴}))
1816, 17mpbiran 943 . . . . . . . . 9 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴})
19 velsn 3651 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2018, 19xchbinx 684 . . . . . . . 8 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴)
2115, 20sylibr 134 . . . . . . 7 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴}))
2221ex 115 . . . . . 6 (𝐴𝐴 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
2322alrimiv 1898 . . . . 5 (𝐴𝐴 → ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
24 df-ral 2490 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})))
25 clelsb1 2311 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴}))
2625imbi2i 226 . . . . . . . . 9 ((𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2726albii 1494 . . . . . . . 8 (∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2824, 27bitri 184 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2928imbi1i 238 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3029albii 1494 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3123, 30sylibr 134 . . . 4 (𝐴𝐴 → ∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})))
32 ax-setind 4589 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
3331, 32syl 14 . . 3 (𝐴𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
34 eleq1 2269 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
3534spcgv 2861 . . 3 (𝐴𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴})))
3633, 35mpd 13 . 2 (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))
37 neldifsnd 3766 . 2 (𝐴𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴}))
3836, 37pm2.65i 640 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  [wsb 1786  wcel 2177  wral 2485  Vcvv 2773  cdif 3164  {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3169  df-sn 3640
This theorem is referenced by:  ordirr  4594  elirrv  4600  sucprcreg  4601  ordsoexmid  4614  onnmin  4620  ssnel  4621  ordtri2or2exmid  4623  reg3exmidlemwe  4631  nntri2  6587  nntri3  6590  nndceq  6592  nndcel  6593  phpelm  6970  fiunsnnn  6985  onunsnss  7021  snon0  7044
  Copyright terms: Public domain W3C validator