ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirr GIF version

Theorem elirr 4610
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4606, we could redefine Ord 𝐴 (df-iord 4434) to also require E Fr 𝐴 (df-frind 4400) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4611 (which under that definition would presumably not need ax-setind 4606 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4611. To encourage ordirr 4611 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

Assertion
Ref Expression
elirr ¬ 𝐴𝐴

Proof of Theorem elirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 3778 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴}))
2 simp1 1002 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴𝐴)
3 eleq1 2272 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
4 eleq1 2272 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
53, 4imbi12d 234 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ((𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
65spcgv 2870 . . . . . . . . . . . . . 14 (𝐴𝑥 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴}))))
76pm2.43b 52 . . . . . . . . . . . . 13 (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
873ad2ant2 1024 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝑥𝐴 ∈ (V ∖ {𝐴})))
9 eleq2 2273 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
109imbi1d 231 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
11103ad2ant3 1025 . . . . . . . . . . . 12 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴𝑥𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))))
128, 11mpbid 147 . . . . . . . . . . 11 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴𝐴𝐴 ∈ (V ∖ {𝐴})))
132, 12mpd 13 . . . . . . . . . 10 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴}))
14133expia 1210 . . . . . . . . 9 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴𝐴 ∈ (V ∖ {𝐴})))
151, 14mtod 667 . . . . . . . 8 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴)
16 vex 2782 . . . . . . . . . 10 𝑥 ∈ V
17 eldif 3186 . . . . . . . . . 10 (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴}))
1816, 17mpbiran 945 . . . . . . . . 9 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴})
19 velsn 3663 . . . . . . . . 9 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2018, 19xchbinx 686 . . . . . . . 8 (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴)
2115, 20sylibr 134 . . . . . . 7 ((𝐴𝐴 ∧ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴}))
2221ex 115 . . . . . 6 (𝐴𝐴 → (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
2322alrimiv 1900 . . . . 5 (𝐴𝐴 → ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
24 df-ral 2493 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})))
25 clelsb1 2314 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴}))
2625imbi2i 226 . . . . . . . . 9 ((𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2726albii 1496 . . . . . . . 8 (∀𝑦(𝑦𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2824, 27bitri 184 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})))
2928imbi1i 238 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3029albii 1496 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴})))
3123, 30sylibr 134 . . . 4 (𝐴𝐴 → ∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})))
32 ax-setind 4606 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
3331, 32syl 14 . . 3 (𝐴𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴}))
34 eleq1 2272 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴})))
3534spcgv 2870 . . 3 (𝐴𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴})))
3633, 35mpd 13 . 2 (𝐴𝐴𝐴 ∈ (V ∖ {𝐴}))
37 neldifsnd 3778 . 2 (𝐴𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴}))
3836, 37pm2.65i 642 1 ¬ 𝐴𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 983  wal 1373   = wceq 1375  [wsb 1788  wcel 2180  wral 2488  Vcvv 2779  cdif 3174  {csn 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-v 2781  df-dif 3179  df-sn 3652
This theorem is referenced by:  ordirr  4611  elirrv  4617  sucprcreg  4618  ordsoexmid  4631  onnmin  4637  ssnel  4638  ordtri2or2exmid  4640  reg3exmidlemwe  4648  nntri2  6610  nntri3  6613  nndceq  6615  nndcel  6616  phpelm  6996  fiunsnnn  7011  onunsnss  7047  snon0  7070
  Copyright terms: Public domain W3C validator