Step | Hyp | Ref
| Expression |
1 | | neldifsnd 3690 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴})) |
2 | | simp1 982 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
3 | | eleq1 2220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
4 | | eleq1 2220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) |
5 | 3, 4 | imbi12d 233 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) |
6 | 5 | spcgv 2799 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑥 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) |
7 | 6 | pm2.43b 52 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) |
8 | 7 | 3ad2ant2 1004 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) |
9 | | eleq2 2221 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
10 | 9 | imbi1d 230 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) |
11 | 10 | 3ad2ant3 1005 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) |
12 | 8, 11 | mpbid 146 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) |
13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴})) |
14 | 13 | 3expia 1187 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) |
15 | 1, 14 | mtod 653 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴) |
16 | | vex 2715 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
17 | | eldif 3111 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴})) |
18 | 16, 17 | mpbiran 925 |
. . . . . . . . 9
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴}) |
19 | | velsn 3577 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
20 | 18, 19 | xchbinx 672 |
. . . . . . . 8
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴) |
21 | 15, 20 | sylibr 133 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴})) |
22 | 21 | ex 114 |
. . . . . 6
⊢ (𝐴 ∈ 𝐴 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
23 | 22 | alrimiv 1854 |
. . . . 5
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
24 | | df-ral 2440 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}))) |
25 | | clelsb3 2262 |
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴})) |
26 | 25 | imbi2i 225 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
27 | 26 | albii 1450 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
28 | 24, 27 | bitri 183 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
29 | 28 | imbi1i 237 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
30 | 29 | albii 1450 |
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
31 | 23, 30 | sylibr 133 |
. . . 4
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴}))) |
32 | | ax-setind 4495 |
. . . 4
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) |
33 | 31, 32 | syl 14 |
. . 3
⊢ (𝐴 ∈ 𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) |
34 | | eleq1 2220 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) |
35 | 34 | spcgv 2799 |
. . 3
⊢ (𝐴 ∈ 𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴}))) |
36 | 33, 35 | mpd 13 |
. 2
⊢ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})) |
37 | | neldifsnd 3690 |
. 2
⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴})) |
38 | 36, 37 | pm2.65i 629 |
1
⊢ ¬
𝐴 ∈ 𝐴 |