ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzdisj GIF version

Theorem fzouzdisj 10183
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzdisj ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅

Proof of Theorem fzouzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eq0 3443 . 2 (((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵)))
2 elfzolt2 10159 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 < 𝐵)
32adantr 276 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 < 𝐵)
4 eluzle 9543 . . . . . 6 (𝑥 ∈ (ℤ𝐵) → 𝐵𝑥)
54adantl 277 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵𝑥)
6 eluzel2 9536 . . . . . . . 8 (𝑥 ∈ (ℤ𝐵) → 𝐵 ∈ ℤ)
76adantl 277 . . . . . . 7 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℤ)
87zred 9378 . . . . . 6 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℝ)
9 eluzelre 9541 . . . . . . 7 (𝑥 ∈ (ℤ𝐵) → 𝑥 ∈ ℝ)
109adantl 277 . . . . . 6 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 ∈ ℝ)
118, 10lenltd 8078 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
125, 11mpbid 147 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → ¬ 𝑥 < 𝐵)
133, 12pm2.65i 639 . . 3 ¬ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵))
14 elin 3320 . . 3 (𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)))
1513, 14mtbir 671 . 2 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵))
161, 15mpgbir 1453 1 ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1353  wcel 2148  cin 3130  c0 3424   class class class wbr 4005  cfv 5218  (class class class)co 5878  cr 7813   < clt 7995  cle 7996  cz 9256  cuz 9531  ..^cfzo 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator