![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzouzdisj | GIF version |
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
Ref | Expression |
---|---|
fzouzdisj | ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3345 | . 2 ⊢ (((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵))) | |
2 | elfzolt2 9820 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 < 𝐵) | |
3 | 2 | adantr 272 | . . . 4 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → 𝑥 < 𝐵) |
4 | eluzle 9234 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘𝐵) → 𝐵 ≤ 𝑥) | |
5 | 4 | adantl 273 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → 𝐵 ≤ 𝑥) |
6 | eluzel2 9227 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘𝐵) → 𝐵 ∈ ℤ) | |
7 | 6 | adantl 273 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → 𝐵 ∈ ℤ) |
8 | 7 | zred 9071 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → 𝐵 ∈ ℝ) |
9 | eluzelre 9232 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘𝐵) → 𝑥 ∈ ℝ) | |
10 | 9 | adantl 273 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℝ) |
11 | 8, 10 | lenltd 7797 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
12 | 5, 11 | mpbid 146 | . . . 4 ⊢ ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) → ¬ 𝑥 < 𝐵) |
13 | 3, 12 | pm2.65i 611 | . . 3 ⊢ ¬ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵)) |
14 | elin 3223 | . . 3 ⊢ (𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ≥‘𝐵))) | |
15 | 13, 14 | mtbir 643 | . 2 ⊢ ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) |
16 | 1, 15 | mpgbir 1410 | 1 ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1312 ∈ wcel 1461 ∩ cin 3034 ∅c0 3327 class class class wbr 3893 ‘cfv 5079 (class class class)co 5726 ℝcr 7540 < clt 7718 ≤ cle 7719 ℤcz 8952 ℤ≥cuz 9222 ..^cfzo 9806 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-inn 8625 df-n0 8876 df-z 8953 df-uz 9223 df-fz 9678 df-fzo 9807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |