ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzdisj GIF version

Theorem fzouzdisj 10304
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzdisj ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅

Proof of Theorem fzouzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eq0 3479 . 2 (((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵)))
2 elfzolt2 10279 . . . . 5 (𝑥 ∈ (𝐴..^𝐵) → 𝑥 < 𝐵)
32adantr 276 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 < 𝐵)
4 eluzle 9660 . . . . . 6 (𝑥 ∈ (ℤ𝐵) → 𝐵𝑥)
54adantl 277 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵𝑥)
6 eluzel2 9653 . . . . . . . 8 (𝑥 ∈ (ℤ𝐵) → 𝐵 ∈ ℤ)
76adantl 277 . . . . . . 7 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℤ)
87zred 9495 . . . . . 6 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝐵 ∈ ℝ)
9 eluzelre 9658 . . . . . . 7 (𝑥 ∈ (ℤ𝐵) → 𝑥 ∈ ℝ)
109adantl 277 . . . . . 6 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → 𝑥 ∈ ℝ)
118, 10lenltd 8190 . . . . 5 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
125, 11mpbid 147 . . . 4 ((𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)) → ¬ 𝑥 < 𝐵)
133, 12pm2.65i 640 . . 3 ¬ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵))
14 elin 3356 . . 3 (𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵)) ↔ (𝑥 ∈ (𝐴..^𝐵) ∧ 𝑥 ∈ (ℤ𝐵)))
1513, 14mtbir 673 . 2 ¬ 𝑥 ∈ ((𝐴..^𝐵) ∩ (ℤ𝐵))
161, 15mpgbir 1476 1 ((𝐴..^𝐵) ∩ (ℤ𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1373  wcel 2176  cin 3165  c0 3460   class class class wbr 4044  cfv 5271  (class class class)co 5944  cr 7924   < clt 8107  cle 8108  cz 9372  cuz 9648  ..^cfzo 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator