| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
| 2 | eldifn 3327 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
| 3 | 1, 2 | pm2.65i 642 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
| 4 | df-nul 3492 | . . 3 ⊢ ∅ = (V ∖ V) | |
| 5 | 4 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
| 6 | 3, 5 | mtbir 675 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: nel02 3496 n0i 3497 n0rf 3504 rex0 3509 eq0 3510 abvor0dc 3515 rab0 3520 un0 3525 in0 3526 0ss 3530 disj 3540 ral0 3593 int0 3936 iun0 4021 0iun 4022 br0 4131 exmid01 4281 nlim0 4484 nsuceq0g 4508 ordtriexmidlem 4610 ordtriexmidlem2 4611 ordtriexmid 4612 ontriexmidim 4613 ordtri2or2exmidlem 4617 onsucelsucexmidlem 4620 reg2exmidlema 4625 reg3exmidlemwe 4670 nn0eln0 4711 0xp 4798 dm0 4936 dm0rn0 4939 reldm0 4940 cnv0 5131 co02 5241 0fv 5664 acexmidlema 5991 acexmidlemb 5992 acexmidlemab 5994 mpo0 6073 nnsucelsuc 6635 nnsucuniel 6639 nnmordi 6660 nnaordex 6672 0er 6712 fidcenumlemrk 7117 nnnninfeq 7291 iftrueb01 7404 pw1if 7406 elni2 7497 nlt1pig 7524 0npr 7666 fzm1 10292 frec2uzltd 10620 0tonninf 10657 sum0 11894 fsumsplit 11913 sumsplitdc 11938 fsum2dlemstep 11940 prod0 12091 fprod2dlemstep 12128 ennnfonelem1 12973 0g0 13404 0ntop 14675 0met 15052 lgsdir2lem3 15703 if0ab 16127 bdcnul 16186 bj-nnelirr 16274 nnnninfex 16347 |
| Copyright terms: Public domain | W3C validator |