| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3294 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
| 2 | eldifn 3295 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
| 3 | 1, 2 | pm2.65i 640 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
| 4 | df-nul 3460 | . . 3 ⊢ ∅ = (V ∖ V) | |
| 5 | 4 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
| 6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: nel02 3464 n0i 3465 n0rf 3472 rex0 3477 eq0 3478 abvor0dc 3483 rab0 3488 un0 3493 in0 3494 0ss 3498 disj 3508 ral0 3561 int0 3898 iun0 3983 0iun 3984 br0 4091 exmid01 4241 nlim0 4440 nsuceq0g 4464 ordtriexmidlem 4566 ordtriexmidlem2 4567 ordtriexmid 4568 ontriexmidim 4569 ordtri2or2exmidlem 4573 onsucelsucexmidlem 4576 reg2exmidlema 4581 reg3exmidlemwe 4626 nn0eln0 4667 0xp 4754 dm0 4891 dm0rn0 4894 reldm0 4895 cnv0 5085 co02 5195 0fv 5611 acexmidlema 5934 acexmidlemb 5935 acexmidlemab 5937 mpo0 6014 nnsucelsuc 6576 nnsucuniel 6580 nnmordi 6601 nnaordex 6613 0er 6653 fidcenumlemrk 7055 nnnninfeq 7229 elni2 7426 nlt1pig 7453 0npr 7595 fzm1 10221 frec2uzltd 10546 0tonninf 10583 sum0 11641 fsumsplit 11660 sumsplitdc 11685 fsum2dlemstep 11687 prod0 11838 fprod2dlemstep 11875 ennnfonelem1 12720 0g0 13150 0ntop 14421 0met 14798 lgsdir2lem3 15449 if0ab 15674 bdcnul 15734 bj-nnelirr 15822 nnnninfex 15892 |
| Copyright terms: Public domain | W3C validator |