![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3258 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
2 | eldifn 3259 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
3 | 1, 2 | pm2.65i 639 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
4 | df-nul 3424 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 671 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2148 Vcvv 2738 ∖ cdif 3127 ∅c0 3423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-dif 3132 df-nul 3424 |
This theorem is referenced by: nel02 3428 n0i 3429 n0rf 3436 rex0 3441 eq0 3442 abvor0dc 3447 rab0 3452 un0 3457 in0 3458 0ss 3462 disj 3472 ral0 3525 int0 3859 iun0 3944 0iun 3945 br0 4052 exmid01 4199 nlim0 4395 nsuceq0g 4419 ordtriexmidlem 4519 ordtriexmidlem2 4520 ordtriexmid 4521 ontriexmidim 4522 ordtri2or2exmidlem 4526 onsucelsucexmidlem 4529 reg2exmidlema 4534 reg3exmidlemwe 4579 nn0eln0 4620 0xp 4707 dm0 4842 dm0rn0 4845 reldm0 4846 cnv0 5033 co02 5143 0fv 5551 acexmidlema 5866 acexmidlemb 5867 acexmidlemab 5869 mpo0 5945 nnsucelsuc 6492 nnsucuniel 6496 nnmordi 6517 nnaordex 6529 0er 6569 fidcenumlemrk 6953 nnnninfeq 7126 elni2 7313 nlt1pig 7340 0npr 7482 fzm1 10100 frec2uzltd 10403 0tonninf 10439 sum0 11396 fsumsplit 11415 sumsplitdc 11440 fsum2dlemstep 11442 prod0 11593 fprod2dlemstep 11630 ennnfonelem1 12408 0g0 12795 0ntop 13510 0met 13887 lgsdir2lem3 14434 if0ab 14560 bdcnul 14620 bj-nnelirr 14708 |
Copyright terms: Public domain | W3C validator |