Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3249 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
2 | eldifn 3250 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
3 | 1, 2 | pm2.65i 634 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
4 | df-nul 3415 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 666 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: nel02 3419 n0i 3420 n0rf 3427 rex0 3432 eq0 3433 abvor0dc 3438 rab0 3443 un0 3448 in0 3449 0ss 3453 disj 3463 ral0 3516 int0 3845 iun0 3929 0iun 3930 br0 4037 exmid01 4184 nlim0 4379 nsuceq0g 4403 ordtriexmidlem 4503 ordtriexmidlem2 4504 ordtriexmid 4505 ontriexmidim 4506 ordtri2or2exmidlem 4510 onsucelsucexmidlem 4513 reg2exmidlema 4518 reg3exmidlemwe 4563 nn0eln0 4604 0xp 4691 dm0 4825 dm0rn0 4828 reldm0 4829 cnv0 5014 co02 5124 0fv 5531 acexmidlema 5844 acexmidlemb 5845 acexmidlemab 5847 mpo0 5923 nnsucelsuc 6470 nnsucuniel 6474 nnmordi 6495 nnaordex 6507 0er 6547 fidcenumlemrk 6931 nnnninfeq 7104 elni2 7276 nlt1pig 7303 0npr 7445 fzm1 10056 frec2uzltd 10359 0tonninf 10395 sum0 11351 fsumsplit 11370 sumsplitdc 11395 fsum2dlemstep 11397 prod0 11548 fprod2dlemstep 11585 ennnfonelem1 12362 0g0 12630 0ntop 12799 0met 13178 lgsdir2lem3 13725 if0ab 13840 bdcnul 13900 bj-nnelirr 13988 |
Copyright terms: Public domain | W3C validator |