![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3282 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
2 | eldifn 3283 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
3 | 1, 2 | pm2.65i 640 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
4 | df-nul 3448 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∅c0 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-nul 3448 |
This theorem is referenced by: nel02 3452 n0i 3453 n0rf 3460 rex0 3465 eq0 3466 abvor0dc 3471 rab0 3476 un0 3481 in0 3482 0ss 3486 disj 3496 ral0 3549 int0 3885 iun0 3970 0iun 3971 br0 4078 exmid01 4228 nlim0 4426 nsuceq0g 4450 ordtriexmidlem 4552 ordtriexmidlem2 4553 ordtriexmid 4554 ontriexmidim 4555 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 reg2exmidlema 4567 reg3exmidlemwe 4612 nn0eln0 4653 0xp 4740 dm0 4877 dm0rn0 4880 reldm0 4881 cnv0 5070 co02 5180 0fv 5591 acexmidlema 5910 acexmidlemb 5911 acexmidlemab 5913 mpo0 5989 nnsucelsuc 6546 nnsucuniel 6550 nnmordi 6571 nnaordex 6583 0er 6623 fidcenumlemrk 7015 nnnninfeq 7189 elni2 7376 nlt1pig 7403 0npr 7545 fzm1 10169 frec2uzltd 10477 0tonninf 10514 sum0 11534 fsumsplit 11553 sumsplitdc 11578 fsum2dlemstep 11580 prod0 11731 fprod2dlemstep 11768 ennnfonelem1 12567 0g0 12962 0ntop 14186 0met 14563 lgsdir2lem3 15187 if0ab 15367 bdcnul 15427 bj-nnelirr 15515 |
Copyright terms: Public domain | W3C validator |