| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > noel | GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldifi 3285 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
| 2 | eldifn 3286 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
| 3 | 1, 2 | pm2.65i 640 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) | 
| 4 | df-nul 3451 | . . 3 ⊢ ∅ = (V ∖ V) | |
| 5 | 4 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) | 
| 6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 𝐴 ∈ ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 | 
| This theorem is referenced by: nel02 3455 n0i 3456 n0rf 3463 rex0 3468 eq0 3469 abvor0dc 3474 rab0 3479 un0 3484 in0 3485 0ss 3489 disj 3499 ral0 3552 int0 3888 iun0 3973 0iun 3974 br0 4081 exmid01 4231 nlim0 4429 nsuceq0g 4453 ordtriexmidlem 4555 ordtriexmidlem2 4556 ordtriexmid 4557 ontriexmidim 4558 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 reg2exmidlema 4570 reg3exmidlemwe 4615 nn0eln0 4656 0xp 4743 dm0 4880 dm0rn0 4883 reldm0 4884 cnv0 5073 co02 5183 0fv 5594 acexmidlema 5913 acexmidlemb 5914 acexmidlemab 5916 mpo0 5992 nnsucelsuc 6549 nnsucuniel 6553 nnmordi 6574 nnaordex 6586 0er 6626 fidcenumlemrk 7020 nnnninfeq 7194 elni2 7381 nlt1pig 7408 0npr 7550 fzm1 10175 frec2uzltd 10495 0tonninf 10532 sum0 11553 fsumsplit 11572 sumsplitdc 11597 fsum2dlemstep 11599 prod0 11750 fprod2dlemstep 11787 ennnfonelem1 12624 0g0 13019 0ntop 14243 0met 14620 lgsdir2lem3 15271 if0ab 15451 bdcnul 15511 bj-nnelirr 15599 | 
| Copyright terms: Public domain | W3C validator |