Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3244 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
2 | eldifn 3245 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
3 | 1, 2 | pm2.65i 629 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
4 | df-nul 3410 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 661 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: n0i 3414 n0rf 3421 rex0 3426 eq0 3427 abvor0dc 3432 rab0 3437 un0 3442 in0 3443 0ss 3447 disj 3457 ral0 3510 int0 3838 iun0 3922 0iun 3923 br0 4030 exmid01 4177 nlim0 4372 nsuceq0g 4396 ordtriexmidlem 4496 ordtriexmidlem2 4497 ordtriexmid 4498 ontriexmidim 4499 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 reg2exmidlema 4511 reg3exmidlemwe 4556 nn0eln0 4597 0xp 4684 dm0 4818 dm0rn0 4821 reldm0 4822 cnv0 5007 co02 5117 0fv 5521 acexmidlema 5833 acexmidlemb 5834 acexmidlemab 5836 mpo0 5912 nnsucelsuc 6459 nnsucuniel 6463 nnmordi 6484 nnaordex 6495 0er 6535 fidcenumlemrk 6919 nnnninfeq 7092 elni2 7255 nlt1pig 7282 0npr 7424 fzm1 10035 frec2uzltd 10338 0tonninf 10374 sum0 11329 fsumsplit 11348 sumsplitdc 11373 fsum2dlemstep 11375 prod0 11526 fprod2dlemstep 11563 ennnfonelem1 12340 0g0 12607 0ntop 12645 0met 13024 lgsdir2lem3 13571 if0ab 13687 bdcnul 13747 bj-nnelirr 13835 |
Copyright terms: Public domain | W3C validator |