| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > noel | GIF version | ||
| Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3299 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
| 2 | eldifn 3300 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
| 3 | 1, 2 | pm2.65i 640 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
| 4 | df-nul 3465 | . . 3 ⊢ ∅ = (V ∖ V) | |
| 5 | 4 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
| 6 | 3, 5 | mtbir 673 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3167 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-nul 3465 |
| This theorem is referenced by: nel02 3469 n0i 3470 n0rf 3477 rex0 3482 eq0 3483 abvor0dc 3488 rab0 3493 un0 3498 in0 3499 0ss 3503 disj 3513 ral0 3566 int0 3905 iun0 3990 0iun 3991 br0 4100 exmid01 4250 nlim0 4449 nsuceq0g 4473 ordtriexmidlem 4575 ordtriexmidlem2 4576 ordtriexmid 4577 ontriexmidim 4578 ordtri2or2exmidlem 4582 onsucelsucexmidlem 4585 reg2exmidlema 4590 reg3exmidlemwe 4635 nn0eln0 4676 0xp 4763 dm0 4901 dm0rn0 4904 reldm0 4905 cnv0 5095 co02 5205 0fv 5625 acexmidlema 5948 acexmidlemb 5949 acexmidlemab 5951 mpo0 6028 nnsucelsuc 6590 nnsucuniel 6594 nnmordi 6615 nnaordex 6627 0er 6667 fidcenumlemrk 7071 nnnninfeq 7245 iftrueb01 7354 pw1if 7356 elni2 7447 nlt1pig 7474 0npr 7616 fzm1 10242 frec2uzltd 10570 0tonninf 10607 sum0 11774 fsumsplit 11793 sumsplitdc 11818 fsum2dlemstep 11820 prod0 11971 fprod2dlemstep 12008 ennnfonelem1 12853 0g0 13283 0ntop 14554 0met 14931 lgsdir2lem3 15582 if0ab 15880 bdcnul 15939 bj-nnelirr 16027 nnnninfex 16100 |
| Copyright terms: Public domain | W3C validator |