![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > noel | GIF version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3269 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → 𝐴 ∈ V) | |
2 | eldifn 3270 | . . 3 ⊢ (𝐴 ∈ (V ∖ V) → ¬ 𝐴 ∈ V) | |
3 | 1, 2 | pm2.65i 640 | . 2 ⊢ ¬ 𝐴 ∈ (V ∖ V) |
4 | df-nul 3435 | . . 3 ⊢ ∅ = (V ∖ V) | |
5 | 4 | eleq2i 2254 | . 2 ⊢ (𝐴 ∈ ∅ ↔ 𝐴 ∈ (V ∖ V)) |
6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2158 Vcvv 2749 ∖ cdif 3138 ∅c0 3434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-dif 3143 df-nul 3435 |
This theorem is referenced by: nel02 3439 n0i 3440 n0rf 3447 rex0 3452 eq0 3453 abvor0dc 3458 rab0 3463 un0 3468 in0 3469 0ss 3473 disj 3483 ral0 3536 int0 3870 iun0 3955 0iun 3956 br0 4063 exmid01 4210 nlim0 4406 nsuceq0g 4430 ordtriexmidlem 4530 ordtriexmidlem2 4531 ordtriexmid 4532 ontriexmidim 4533 ordtri2or2exmidlem 4537 onsucelsucexmidlem 4540 reg2exmidlema 4545 reg3exmidlemwe 4590 nn0eln0 4631 0xp 4718 dm0 4853 dm0rn0 4856 reldm0 4857 cnv0 5044 co02 5154 0fv 5562 acexmidlema 5879 acexmidlemb 5880 acexmidlemab 5882 mpo0 5958 nnsucelsuc 6506 nnsucuniel 6510 nnmordi 6531 nnaordex 6543 0er 6583 fidcenumlemrk 6967 nnnninfeq 7140 elni2 7327 nlt1pig 7354 0npr 7496 fzm1 10114 frec2uzltd 10417 0tonninf 10453 sum0 11410 fsumsplit 11429 sumsplitdc 11454 fsum2dlemstep 11456 prod0 11607 fprod2dlemstep 11644 ennnfonelem1 12422 0g0 12814 0ntop 13860 0met 14237 lgsdir2lem3 14784 if0ab 14910 bdcnul 14970 bj-nnelirr 15058 |
Copyright terms: Public domain | W3C validator |