| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > soirri | GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| soirri | ⊢ ¬ 𝐴𝑅𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴𝑅𝐴) | |
| 2 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 3 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 4 | 3 | brel 4771 | . . . 4 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 5 | 4 | simpld 112 | . . 3 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ 𝑆) |
| 6 | sonr 4408 | . . 3 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
| 7 | 2, 5, 6 | sylancr 414 | . 2 ⊢ (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴) |
| 8 | 1, 7 | pm2.65i 642 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4083 Or wor 4386 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-po 4387 df-iso 4388 df-xp 4725 |
| This theorem is referenced by: son2lpi 5125 ltsonq 7593 genpdisj 7718 ltposr 7958 axpre-ltirr 8077 |
| Copyright terms: Public domain | W3C validator |