Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > soirri | GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
soirri | ⊢ ¬ 𝐴𝑅𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴𝑅𝐴) | |
2 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
3 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
4 | 3 | brel 4663 | . . . 4 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
5 | 4 | simpld 111 | . . 3 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ 𝑆) |
6 | sonr 4302 | . . 3 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
7 | 2, 5, 6 | sylancr 412 | . 2 ⊢ (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴) |
8 | 1, 7 | pm2.65i 634 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 Or wor 4280 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-po 4281 df-iso 4282 df-xp 4617 |
This theorem is referenced by: son2lpi 5007 ltsonq 7360 genpdisj 7485 ltposr 7725 axpre-ltirr 7844 |
Copyright terms: Public domain | W3C validator |