ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri GIF version

Theorem soirri 4998
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2 (𝐴𝑅𝐴𝐴𝑅𝐴)
2 soi.1 . . 3 𝑅 Or 𝑆
3 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 4656 . . . 4 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
54simpld 111 . . 3 (𝐴𝑅𝐴𝐴𝑆)
6 sonr 4295 . . 3 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
72, 5, 6sylancr 411 . 2 (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴)
81, 7pm2.65i 629 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wss 3116   class class class wbr 3982   Or wor 4273   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610
This theorem is referenced by:  son2lpi  5000  ltsonq  7339  genpdisj  7464  ltposr  7704  axpre-ltirr  7823
  Copyright terms: Public domain W3C validator