| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > soirri | GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| soirri | ⊢ ¬ 𝐴𝑅𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴𝑅𝐴) | |
| 2 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 3 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 4 | 3 | brel 4731 | . . . 4 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 5 | 4 | simpld 112 | . . 3 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ 𝑆) |
| 6 | sonr 4368 | . . 3 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
| 7 | 2, 5, 6 | sylancr 414 | . 2 ⊢ (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴) |
| 8 | 1, 7 | pm2.65i 640 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 ⊆ wss 3167 class class class wbr 4047 Or wor 4346 × cxp 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-po 4347 df-iso 4348 df-xp 4685 |
| This theorem is referenced by: son2lpi 5084 ltsonq 7518 genpdisj 7643 ltposr 7883 axpre-ltirr 8002 |
| Copyright terms: Public domain | W3C validator |