ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri GIF version

Theorem soirri 5082
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2 (𝐴𝑅𝐴𝐴𝑅𝐴)
2 soi.1 . . 3 𝑅 Or 𝑆
3 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 4731 . . . 4 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
54simpld 112 . . 3 (𝐴𝑅𝐴𝐴𝑆)
6 sonr 4368 . . 3 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
72, 5, 6sylancr 414 . 2 (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴)
81, 7pm2.65i 640 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  wss 3167   class class class wbr 4047   Or wor 4346   × cxp 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-po 4347  df-iso 4348  df-xp 4685
This theorem is referenced by:  son2lpi  5084  ltsonq  7518  genpdisj  7643  ltposr  7883  axpre-ltirr  8002
  Copyright terms: Public domain W3C validator