ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri GIF version

Theorem soirri 5099
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2 (𝐴𝑅𝐴𝐴𝑅𝐴)
2 soi.1 . . 3 𝑅 Or 𝑆
3 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 4748 . . . 4 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
54simpld 112 . . 3 (𝐴𝑅𝐴𝐴𝑆)
6 sonr 4385 . . 3 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
72, 5, 6sylancr 414 . 2 (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴)
81, 7pm2.65i 642 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2180  wss 3177   class class class wbr 4062   Or wor 4363   × cxp 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-po 4364  df-iso 4365  df-xp 4702
This theorem is referenced by:  son2lpi  5101  ltsonq  7553  genpdisj  7678  ltposr  7918  axpre-ltirr  8037
  Copyright terms: Public domain W3C validator