| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > soirri | GIF version | ||
| Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| soi.1 | ⊢ 𝑅 Or 𝑆 |
| soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| soirri | ⊢ ¬ 𝐴𝑅𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴𝑅𝐴) | |
| 2 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
| 3 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 4 | 3 | brel 4748 | . . . 4 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 5 | 4 | simpld 112 | . . 3 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ 𝑆) |
| 6 | sonr 4385 | . . 3 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
| 7 | 2, 5, 6 | sylancr 414 | . 2 ⊢ (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴) |
| 8 | 1, 7 | pm2.65i 642 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2180 ⊆ wss 3177 class class class wbr 4062 Or wor 4363 × cxp 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-po 4364 df-iso 4365 df-xp 4702 |
| This theorem is referenced by: son2lpi 5101 ltsonq 7553 genpdisj 7678 ltposr 7918 axpre-ltirr 8037 |
| Copyright terms: Public domain | W3C validator |