ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri GIF version

Theorem soirri 5123
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
soirri ¬ 𝐴𝑅𝐴

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2 (𝐴𝑅𝐴𝐴𝑅𝐴)
2 soi.1 . . 3 𝑅 Or 𝑆
3 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
43brel 4771 . . . 4 (𝐴𝑅𝐴 → (𝐴𝑆𝐴𝑆))
54simpld 112 . . 3 (𝐴𝑅𝐴𝐴𝑆)
6 sonr 4408 . . 3 ((𝑅 Or 𝑆𝐴𝑆) → ¬ 𝐴𝑅𝐴)
72, 5, 6sylancr 414 . 2 (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴)
81, 7pm2.65i 642 1 ¬ 𝐴𝑅𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2200  wss 3197   class class class wbr 4083   Or wor 4386   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-po 4387  df-iso 4388  df-xp 4725
This theorem is referenced by:  son2lpi  5125  ltsonq  7593  genpdisj  7718  ltposr  7958  axpre-ltirr  8077
  Copyright terms: Public domain W3C validator