![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > soirri | GIF version |
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
soirri | ⊢ ¬ 𝐴𝑅𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴𝑅𝐴 → 𝐴𝑅𝐴) | |
2 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
3 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
4 | 3 | brel 4712 | . . . 4 ⊢ (𝐴𝑅𝐴 → (𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
5 | 4 | simpld 112 | . . 3 ⊢ (𝐴𝑅𝐴 → 𝐴 ∈ 𝑆) |
6 | sonr 4349 | . . 3 ⊢ ((𝑅 Or 𝑆 ∧ 𝐴 ∈ 𝑆) → ¬ 𝐴𝑅𝐴) | |
7 | 2, 5, 6 | sylancr 414 | . 2 ⊢ (𝐴𝑅𝐴 → ¬ 𝐴𝑅𝐴) |
8 | 1, 7 | pm2.65i 640 | 1 ⊢ ¬ 𝐴𝑅𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 ⊆ wss 3154 class class class wbr 4030 Or wor 4327 × cxp 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-po 4328 df-iso 4329 df-xp 4666 |
This theorem is referenced by: son2lpi 5063 ltsonq 7460 genpdisj 7585 ltposr 7825 axpre-ltirr 7944 |
Copyright terms: Public domain | W3C validator |