ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsval2lem GIF version

Theorem lgsval2lem 14078
Description: Lemma for lgsval2 14084. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variables 𝑥 𝑦 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmz 12094 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 14072 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
41, 3sylan2 286 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
5 prmnn 12093 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
65adantl 277 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
76nnne0d 8953 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0)
87neneqd 2368 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 = 0)
98iffalsed 3544 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
106nnnn0d 9218 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
1110nn0ge0d 9221 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤ 𝑁)
12 0re 7948 . . . . . . . 8 0 ∈ ℝ
136nnred 8921 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℝ)
14 lenlt 8023 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1512, 13, 14sylancr 414 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1611, 15mpbid 147 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 < 0)
1716intnanrd 932 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 3544 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 11160 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (abs‘𝑁) = 𝑁)
2019fveq2d 5515 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
21 1zzd 9269 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 1 ∈ ℤ)
22 prmuz2 12114 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2322adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘2))
24 df-2 8967 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 5514 . . . . . . . 8 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2270 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘(1 + 1)))
27 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝐴 ∈ ℤ)
281ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
297adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑁 ≠ 0)
302lgsfcl 14076 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
3127, 28, 29, 30syl3anc 1238 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
32 elnnuz 9553 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3332biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
3433adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
3531, 34ffvelcdmd 5648 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℤ)
36 zmulcl 9295 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
3736adantl 277 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
3821, 26, 35, 37seq3m1 10454 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
39 1t1e1 9060 . . . . . . . . 9 (1 · 1) = 1
4039a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · 1) = 1)
41 uz2m1nn 9594 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
4223, 41syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ ℕ)
43 nnuz 9552 . . . . . . . . 9 ℕ = (ℤ‘1)
4442, 43eleqtrdi 2270 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ (ℤ‘1))
45 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝐴 ∈ ℤ)
466adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
47 elfznn 10040 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ)
4847adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ)
492lgsfvalg 14073 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
5045, 46, 48, 49syl3anc 1238 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
51 elfzelz 10011 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ)
5251zred 9364 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ)
5352ltm1d 8878 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁)
54 peano2rem 8214 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5552, 54syl 14 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ)
56 elfzle2 10014 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
5752, 55, 56lensymd 8069 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁)
5853, 57pm2.65i 639 . . . . . . . . . . . . . . . . 17 ¬ 𝑁 ∈ (1...(𝑁 − 1))
59 eleq1 2240 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
6058, 59mtbiri 675 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1)))
6160con2i 627 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁)
6261ad2antlr 489 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁)
63 prmuz2 12114 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
64 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ)
65 dvdsprm 12120 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
6663, 64, 65syl2an2 594 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
6762, 66mtbird 673 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥𝑁)
68 simpr 110 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
696ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ)
70 pceq0 12304 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
7168, 69, 70syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
7267, 71mpbird 167 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0)
7372oveq2d 5885 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0))
74 0zd 9254 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 ∈ ℤ)
75 1zzd 9269 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 1 ∈ ℤ)
76 neg1z 9274 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℤ
7776a1i 9 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → -1 ∈ ℤ)
78 id 19 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
79 8nn 9075 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℕ
8079a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → 8 ∈ ℕ)
8178, 80zmodcld 10331 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
8281nn0zd 9362 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
83 zdceq 9317 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
8482, 75, 83syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
85 7nn 9074 . . . . . . . . . . . . . . . . . . . . . 22 7 ∈ ℕ
8685nnzi 9263 . . . . . . . . . . . . . . . . . . . . 21 7 ∈ ℤ
87 zdceq 9317 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
8882, 86, 87sylancl 413 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
89 dcor 935 . . . . . . . . . . . . . . . . . . . 20 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9084, 88, 89sylc 62 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
91 elprg 3611 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9281, 91syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9392dcbid 838 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9490, 93mpbird 167 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
9575, 77, 94ifcldcd 3569 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ)
96 2nn 9069 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
97 dvdsdc 11789 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 2 ∥ 𝐴)
9896, 97mpan 424 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → DECID 2 ∥ 𝐴)
9974, 95, 98ifcldcd 3569 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
10099ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
101 simpl 109 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈ ℤ)
102101ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝐴 ∈ ℤ)
103 simplr 528 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℙ)
104 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ¬ 𝑥 = 2)
105104neqned 2354 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ≠ 2)
106 eldifsn 3718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
107103, 105, 106sylanbrc 417 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ (ℙ ∖ {2}))
108 oddprm 12242 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥 − 1) / 2) ∈ ℕ)
109107, 108syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ)
110109nnnn0d 9218 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ0)
111 zexpcl 10521 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
112102, 110, 111syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
113112peano2zd 9367 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈ ℤ)
114 prmnn 12093 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
115114ad2antlr 489 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℕ)
116113, 115zmodcld 10331 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℕ0)
117116nn0zd 9362 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ)
118 peano2zm 9280 . . . . . . . . . . . . . . . 16 ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
119117, 118syl 14 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
120 prmz 12094 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
121 2z 9270 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
122121a1i 9 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → 2 ∈ ℤ)
123 zdceq 9317 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑥 = 2)
124120, 122, 123syl2an2 594 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → DECID 𝑥 = 2)
125100, 119, 124ifcldadc 3563 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℤ)
126125zcnd 9365 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
127126adantlr 477 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
128127exp0d 10633 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1)
12973, 128eqtrd 2210 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1)
130 prmdc 12113 . . . . . . . . . . 11 (𝑥 ∈ ℕ → DECID 𝑥 ∈ ℙ)
13148, 130syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → DECID 𝑥 ∈ ℙ)
132129, 131ifeq1dadc 3564 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1))
133 ifiddc 3567 . . . . . . . . . 10 (DECID 𝑥 ∈ ℙ → if(𝑥 ∈ ℙ, 1, 1) = 1)
134131, 133syl 14 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, 1, 1) = 1)
13550, 132, 1343eqtrd 2214 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = 1)
136 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℤ)
1371ad2antlr 489 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
1387adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑁 ≠ 0)
139136, 137, 138, 30syl3anc 1238 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
140 elnnuz 9553 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
141140biimpri 133 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
142141adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
143139, 142ffvelcdmd 5648 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℤ)
144 zmulcl 9295 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
145144adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
14640, 44, 135, 21, 143, 145seq3id3 10493 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(𝑁 − 1)) = 1)
147146oveq1d 5884 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)) = (1 · (𝐹𝑁)))
1481adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
149101, 148, 7, 30syl3anc 1238 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ)
150149, 6ffvelcdmd 5648 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
151150zcnd 9365 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℂ)
152151mulid2d 7966 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · (𝐹𝑁)) = (𝐹𝑁))
15338, 147, 1523eqtrd 2214 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = (𝐹𝑁))
15420, 153eqtrd 2210 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (𝐹𝑁))
15518, 154oveq12d 5887 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹𝑁)))
1562lgsfvalg 14073 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
157101, 6, 6, 156syl3anc 1238 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
158 iftrue 3539 . . . . 5 (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
159158adantl 277 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
1606nncnd 8922 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
161160exp1d 10634 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁)
162161oveq2d 5885 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
163 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℙ)
164 1z 9268 . . . . . . . 8 1 ∈ ℤ
165 pcid 12306 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑁 pCnt (𝑁↑1)) = 1)
166163, 164, 165sylancl 413 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1)
167162, 166eqtr3d 2212 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1)
168167oveq2d 5885 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1))
169 eqeq1 2184 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2))
170 oveq1 5876 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
171170oveq1d 5884 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2))
172171oveq2d 5885 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2)))
173172oveq1d 5884 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1))
174 id 19 . . . . . . . . . . 11 (𝑥 = 𝑁𝑥 = 𝑁)
175173, 174oveq12d 5887 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁))
176175oveq1d 5884 . . . . . . . . 9 (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))
177169, 176ifbieq2d 3558 . . . . . . . 8 (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
178177eleq1d 2246 . . . . . . 7 (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ))
179126ralrimiva 2550 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ∀𝑥 ∈ ℙ if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
180178, 179, 163rspcdva 2846 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ)
181180exp1d 10634 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
182168, 181eqtrd 2210 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
183157, 159, 1823eqtrd 2214 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
184155, 152, 1833eqtrd 2214 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
1854, 9, 1843eqtrd 2214 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  cdif 3126  ifcif 3534  {csn 3591  {cpr 3592   class class class wbr 4000  cmpt 4061  wf 5208  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  -cneg 8119   / cdiv 8618  cn 8908  2c2 8959  7c7 8964  8c8 8965  0cn0 9165  cz 9242  cuz 9517  ...cfz 9995   mod cmo 10308  seqcseq 10431  cexp 10505  abscabs 10990  cdvds 11778  cprime 12090   pCnt cpc 12267   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgsval4lem  14079  lgsval2  14084
  Copyright terms: Public domain W3C validator