ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsval2lem GIF version

Theorem lgsval2lem 15537
Description: Lemma for lgsval2 15543. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variables 𝑥 𝑦 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmz 12483 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 15531 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
41, 3sylan2 286 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
5 prmnn 12482 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
65adantl 277 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
76nnne0d 9094 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0)
87neneqd 2398 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 = 0)
98iffalsed 3583 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
106nnnn0d 9361 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
1110nn0ge0d 9364 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤ 𝑁)
12 0re 8085 . . . . . . . 8 0 ∈ ℝ
136nnred 9062 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℝ)
14 lenlt 8161 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1512, 13, 14sylancr 414 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1611, 15mpbid 147 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 < 0)
1716intnanrd 934 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 3583 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 11528 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (abs‘𝑁) = 𝑁)
2019fveq2d 5590 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
21 1zzd 9412 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 1 ∈ ℤ)
22 prmuz2 12503 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2322adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘2))
24 df-2 9108 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 5589 . . . . . . . 8 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2299 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘(1 + 1)))
27 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝐴 ∈ ℤ)
281ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
297adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑁 ≠ 0)
302lgsfcl 15535 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
3127, 28, 29, 30syl3anc 1250 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
32 elnnuz 9698 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3332biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
3433adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
3531, 34ffvelcdmd 5726 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℤ)
36 zmulcl 9439 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
3736adantl 277 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
3821, 26, 35, 37seq3m1 10631 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
39 1t1e1 9202 . . . . . . . . 9 (1 · 1) = 1
4039a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · 1) = 1)
41 uz2m1nn 9739 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
4223, 41syl 14 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ ℕ)
43 nnuz 9697 . . . . . . . . 9 ℕ = (ℤ‘1)
4442, 43eleqtrdi 2299 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ (ℤ‘1))
45 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝐴 ∈ ℤ)
466adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
47 elfznn 10189 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ)
4847adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ)
492lgsfvalg 15532 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
5045, 46, 48, 49syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
51 elfzelz 10160 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ)
5251zred 9508 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ)
5352ltm1d 9018 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁)
54 peano2rem 8352 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5552, 54syl 14 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ)
56 elfzle2 10163 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
5752, 55, 56lensymd 8207 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁)
5853, 57pm2.65i 640 . . . . . . . . . . . . . . . . 17 ¬ 𝑁 ∈ (1...(𝑁 − 1))
59 eleq1 2269 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
6058, 59mtbiri 677 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1)))
6160con2i 628 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁)
6261ad2antlr 489 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁)
63 prmuz2 12503 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
64 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ)
65 dvdsprm 12509 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
6663, 64, 65syl2an2 594 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
6762, 66mtbird 675 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥𝑁)
68 simpr 110 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
696ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ)
70 pceq0 12695 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
7168, 69, 70syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
7267, 71mpbird 167 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0)
7372oveq2d 5970 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0))
74 0zd 9397 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 0 ∈ ℤ)
75 1zzd 9412 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 1 ∈ ℤ)
76 neg1z 9417 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℤ
7776a1i 9 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → -1 ∈ ℤ)
78 id 19 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → 𝐴 ∈ ℤ)
79 8nn 9217 . . . . . . . . . . . . . . . . . . . . . . . 24 8 ∈ ℕ
8079a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → 8 ∈ ℕ)
8178, 80zmodcld 10503 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
8281nn0zd 9506 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
83 zdceq 9461 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
8482, 75, 83syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
85 7nn 9216 . . . . . . . . . . . . . . . . . . . . . 22 7 ∈ ℕ
8685nnzi 9406 . . . . . . . . . . . . . . . . . . . . 21 7 ∈ ℤ
87 zdceq 9461 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
8882, 86, 87sylancl 413 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
89 dcor 938 . . . . . . . . . . . . . . . . . . . 20 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9084, 88, 89sylc 62 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
91 elprg 3655 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9281, 91syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9392dcbid 840 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
9490, 93mpbird 167 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
9575, 77, 94ifcldcd 3610 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ)
96 2nn 9211 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
97 dvdsdc 12159 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 2 ∥ 𝐴)
9896, 97mpan 424 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → DECID 2 ∥ 𝐴)
9974, 95, 98ifcldcd 3610 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
10099ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
101 simpl 109 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈ ℤ)
102101ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝐴 ∈ ℤ)
103 simplr 528 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℙ)
104 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ¬ 𝑥 = 2)
105104neqned 2384 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ≠ 2)
106 eldifsn 3763 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
107103, 105, 106sylanbrc 417 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ (ℙ ∖ {2}))
108 oddprm 12632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥 − 1) / 2) ∈ ℕ)
109107, 108syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ)
110109nnnn0d 9361 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ0)
111 zexpcl 10712 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
112102, 110, 111syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
113112peano2zd 9511 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈ ℤ)
114 prmnn 12482 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
115114ad2antlr 489 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℕ)
116113, 115zmodcld 10503 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℕ0)
117116nn0zd 9506 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ)
118 peano2zm 9423 . . . . . . . . . . . . . . . 16 ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
119117, 118syl 14 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
120 prmz 12483 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
121 2z 9413 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
122121a1i 9 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → 2 ∈ ℤ)
123 zdceq 9461 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑥 = 2)
124120, 122, 123syl2an2 594 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → DECID 𝑥 = 2)
125100, 119, 124ifcldadc 3602 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℤ)
126125zcnd 9509 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
127126adantlr 477 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
128127exp0d 10825 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1)
12973, 128eqtrd 2239 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1)
130 prmdc 12502 . . . . . . . . . . 11 (𝑥 ∈ ℕ → DECID 𝑥 ∈ ℙ)
13148, 130syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → DECID 𝑥 ∈ ℙ)
132129, 131ifeq1dadc 3603 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1))
133 ifiddc 3608 . . . . . . . . . 10 (DECID 𝑥 ∈ ℙ → if(𝑥 ∈ ℙ, 1, 1) = 1)
134131, 133syl 14 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, 1, 1) = 1)
13550, 132, 1343eqtrd 2243 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = 1)
136 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℤ)
1371ad2antlr 489 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
1387adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑁 ≠ 0)
139136, 137, 138, 30syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
140 elnnuz 9698 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
141140biimpri 133 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
142141adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
143139, 142ffvelcdmd 5726 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℤ)
144 zmulcl 9439 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
145144adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
14640, 44, 135, 21, 143, 145seq3id3 10682 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(𝑁 − 1)) = 1)
147146oveq1d 5969 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)) = (1 · (𝐹𝑁)))
1481adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
149101, 148, 7, 30syl3anc 1250 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ)
150149, 6ffvelcdmd 5726 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
151150zcnd 9509 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℂ)
152151mulid2d 8104 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · (𝐹𝑁)) = (𝐹𝑁))
15338, 147, 1523eqtrd 2243 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = (𝐹𝑁))
15420, 153eqtrd 2239 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (𝐹𝑁))
15518, 154oveq12d 5972 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹𝑁)))
1562lgsfvalg 15532 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
157101, 6, 6, 156syl3anc 1250 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
158 iftrue 3578 . . . . 5 (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
159158adantl 277 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
1606nncnd 9063 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
161160exp1d 10826 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁)
162161oveq2d 5970 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
163 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℙ)
164 1z 9411 . . . . . . . 8 1 ∈ ℤ
165 pcid 12697 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑁 pCnt (𝑁↑1)) = 1)
166163, 164, 165sylancl 413 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1)
167162, 166eqtr3d 2241 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1)
168167oveq2d 5970 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1))
169 eqeq1 2213 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2))
170 oveq1 5961 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
171170oveq1d 5969 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2))
172171oveq2d 5970 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2)))
173172oveq1d 5969 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1))
174 id 19 . . . . . . . . . . 11 (𝑥 = 𝑁𝑥 = 𝑁)
175173, 174oveq12d 5972 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁))
176175oveq1d 5969 . . . . . . . . 9 (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))
177169, 176ifbieq2d 3597 . . . . . . . 8 (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
178177eleq1d 2275 . . . . . . 7 (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ))
179126ralrimiva 2580 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ∀𝑥 ∈ ℙ if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
180178, 179, 163rspcdva 2884 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ)
181180exp1d 10826 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
182168, 181eqtrd 2239 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
183157, 159, 1823eqtrd 2243 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
184155, 152, 1833eqtrd 2243 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
1854, 9, 1843eqtrd 2243 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  cdif 3165  ifcif 3573  {csn 3635  {cpr 3636   class class class wbr 4048  cmpt 4110  wf 5273  cfv 5277  (class class class)co 5954  cc 7936  cr 7937  0cc0 7938  1c1 7939   + caddc 7941   · cmul 7943   < clt 8120  cle 8121  cmin 8256  -cneg 8257   / cdiv 8758  cn 9049  2c2 9100  7c7 9105  8c8 9106  0cn0 9308  cz 9385  cuz 9661  ...cfz 10143   mod cmo 10480  seqcseq 10605  cexp 10696  abscabs 11358  cdvds 12148  cprime 12479   pCnt cpc 12657   /L clgs 15524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-2o 6513  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912  df-dvds 12149  df-gcd 12325  df-prm 12480  df-phi 12583  df-pc 12658  df-lgs 15525
This theorem is referenced by:  lgsval4lem  15538  lgsval2  15543
  Copyright terms: Public domain W3C validator