ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg GIF version

Theorem infsupneg 9403
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9402. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infsupneg.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infsupneg (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑤,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)

Proof of Theorem infsupneg
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 breq2 3933 . . . . . . . 8 (𝑎 = 𝑥 → (𝑦 < 𝑎𝑦 < 𝑥))
32notbid 656 . . . . . . 7 (𝑎 = 𝑥 → (¬ 𝑦 < 𝑎 ↔ ¬ 𝑦 < 𝑥))
43ralbidv 2437 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
5 breq1 3932 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑦𝑥 < 𝑦))
65imbi1d 230 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
76ralbidv 2437 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
84, 7anbi12d 464 . . . . 5 (𝑎 = 𝑥 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
98cbvrexv 2655 . . . 4 (∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
101, 9sylibr 133 . . 3 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
11 breq1 3932 . . . . . . 7 (𝑏 = 𝑦 → (𝑏 < 𝑎𝑦 < 𝑎))
1211notbid 656 . . . . . 6 (𝑏 = 𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ 𝑦 < 𝑎))
1312cbvralv 2654 . . . . 5 (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑎)
14 breq1 3932 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑐 < 𝑏𝑧 < 𝑏))
1514cbvrexv 2655 . . . . . . . 8 (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑏)
1615imbi2i 225 . . . . . . 7 ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
1716ralbii 2441 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
18 breq2 3933 . . . . . . . 8 (𝑏 = 𝑦 → (𝑎 < 𝑏𝑎 < 𝑦))
19 breq2 3933 . . . . . . . . 9 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
2019rexbidv 2438 . . . . . . . 8 (𝑏 = 𝑦 → (∃𝑧𝐴 𝑧 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2118, 20imbi12d 233 . . . . . . 7 (𝑏 = 𝑦 → ((𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2221cbvralv 2654 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2317, 22bitri 183 . . . . 5 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2413, 23anbi12i 455 . . . 4 ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524rexbii 2442 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2610, 25sylibr 133 . 2 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
27 renegcl 8035 . . . . . 6 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
2827ad2antlr 480 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → -𝑎 ∈ ℝ)
29 simplr 519 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → 𝑎 ∈ ℝ)
30 simprl 520 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
31 elrabi 2837 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑦 ∈ ℝ)
32 negeq 7967 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → -𝑤 = -𝑦)
3332eleq1d 2208 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (-𝑤𝐴 ↔ -𝑦𝐴))
3433elrab3 2841 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑦𝐴))
3534biimpd 143 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴))
3631, 35mpcom 36 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴)
37 breq1 3932 . . . . . . . . . . . . 13 (𝑏 = -𝑦 → (𝑏 < 𝑎 ↔ -𝑦 < 𝑎))
3837notbid 656 . . . . . . . . . . . 12 (𝑏 = -𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ -𝑦 < 𝑎))
3938rspcv 2785 . . . . . . . . . . 11 (-𝑦𝐴 → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4036, 39syl 14 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4140adantr 274 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
42 ltnegcon1 8237 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4342ancoms 266 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4443notbid 656 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4531, 44sylan 281 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4641, 45sylibrd 168 . . . . . . . 8 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4746ancoms 266 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4847ralrimdva 2512 . . . . . 6 (𝑎 ∈ ℝ → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
4929, 30, 48sylc 62 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦)
50 nfv 1508 . . . . . . . . . . . 12 𝑐(𝜑𝑎 ∈ ℝ)
51 nfcv 2281 . . . . . . . . . . . . 13 𝑐
52 nfv 1508 . . . . . . . . . . . . . 14 𝑐 𝑎 < 𝑏
53 nfre1 2476 . . . . . . . . . . . . . 14 𝑐𝑐𝐴 𝑐 < 𝑏
5452, 53nfim 1551 . . . . . . . . . . . . 13 𝑐(𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5551, 54nfralya 2473 . . . . . . . . . . . 12 𝑐𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5650, 55nfan 1544 . . . . . . . . . . 11 𝑐((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
57 nfv 1508 . . . . . . . . . . 11 𝑐 𝑦 ∈ ℝ
5856, 57nfan 1544 . . . . . . . . . 10 𝑐(((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ)
59 nfv 1508 . . . . . . . . . 10 𝑐 𝑦 < -𝑎
6058, 59nfan 1544 . . . . . . . . 9 𝑐((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎)
61 simplr 519 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐𝐴)
62 infsupneg.ss . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6362sseld 3096 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝐴𝑐 ∈ ℝ))
6463ad6antr 489 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → (𝑐𝐴𝑐 ∈ ℝ))
6561, 64mpd 13 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℝ)
6665renegcld 8154 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ ℝ)
6765recnd 7806 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℂ)
6867negnegd 8076 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐 = 𝑐)
6968, 61eqeltrd 2216 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐𝐴)
70 negeq 7967 . . . . . . . . . . . . 13 (𝑤 = -𝑐 → -𝑤 = --𝑐)
7170eleq1d 2208 . . . . . . . . . . . 12 (𝑤 = -𝑐 → (-𝑤𝐴 ↔ --𝑐𝐴))
7271elrab 2840 . . . . . . . . . . 11 (-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ (-𝑐 ∈ ℝ ∧ --𝑐𝐴))
7366, 69, 72sylanbrc 413 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴})
74 simp-4r 531 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 ∈ ℝ)
75 simpr 109 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 < -𝑦)
7665, 74, 75ltnegcon2d 8300 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 < -𝑐)
77 breq2 3933 . . . . . . . . . . 11 (𝑧 = -𝑐 → (𝑦 < 𝑧𝑦 < -𝑐))
7877rspcev 2789 . . . . . . . . . 10 ((-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑦 < -𝑐) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
7973, 76, 78syl2anc 408 . . . . . . . . 9 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
80 simpllr 523 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑎 ∈ ℝ)
81 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
82 simplr 519 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
8380, 81, 82jca31 307 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
84 ltnegcon2 8238 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8584ancoms 266 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8685adantr 274 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎𝑎 < -𝑦))
87 renegcl 8035 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
88 breq2 3933 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (𝑎 < 𝑏𝑎 < -𝑦))
89 breq2 3933 . . . . . . . . . . . . . . . . . 18 (𝑏 = -𝑦 → (𝑐 < 𝑏𝑐 < -𝑦))
9089rexbidv 2438 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑐𝐴 𝑐 < -𝑦))
9188, 90imbi12d 233 . . . . . . . . . . . . . . . 16 (𝑏 = -𝑦 → ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9291rspcv 2785 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9387, 92syl 14 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9493adantl 275 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9594imp 123 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦))
9686, 95sylbid 149 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎 → ∃𝑐𝐴 𝑐 < -𝑦))
9796imp 123 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9883, 97sylan 281 . . . . . . . . 9 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9960, 79, 98r19.29af 2573 . . . . . . . 8 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
10099ex 114 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
101100ralrimiva 2505 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
102101adantrl 469 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
103 breq1 3932 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑥 < 𝑦 ↔ -𝑎 < 𝑦))
104103notbid 656 . . . . . . . 8 (𝑥 = -𝑎 → (¬ 𝑥 < 𝑦 ↔ ¬ -𝑎 < 𝑦))
105104ralbidv 2437 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
106 breq2 3933 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑦 < 𝑥𝑦 < -𝑎))
107106imbi1d 230 . . . . . . . 8 (𝑥 = -𝑎 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
108107ralbidv 2437 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
109105, 108anbi12d 464 . . . . . 6 (𝑥 = -𝑎 → ((∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
110109rspcev 2789 . . . . 5 ((-𝑎 ∈ ℝ ∧ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
11128, 49, 102, 110syl12anc 1214 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
112111ex 114 . . 3 ((𝜑𝑎 ∈ ℝ) → ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
113112rexlimdva 2549 . 2 (𝜑 → (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
11426, 113mpd 13 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071   class class class wbr 3929  cr 7631   < clt 7812  -cneg 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-ltxr 7817  df-sub 7947  df-neg 7948
This theorem is referenced by:  infssuzcldc  11655
  Copyright terms: Public domain W3C validator