ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg GIF version

Theorem infsupneg 9534
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9533. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infsupneg.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infsupneg (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑤,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)

Proof of Theorem infsupneg
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 breq2 3986 . . . . . . . 8 (𝑎 = 𝑥 → (𝑦 < 𝑎𝑦 < 𝑥))
32notbid 657 . . . . . . 7 (𝑎 = 𝑥 → (¬ 𝑦 < 𝑎 ↔ ¬ 𝑦 < 𝑥))
43ralbidv 2466 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
5 breq1 3985 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑦𝑥 < 𝑦))
65imbi1d 230 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
76ralbidv 2466 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
84, 7anbi12d 465 . . . . 5 (𝑎 = 𝑥 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
98cbvrexv 2693 . . . 4 (∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
101, 9sylibr 133 . . 3 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
11 breq1 3985 . . . . . . 7 (𝑏 = 𝑦 → (𝑏 < 𝑎𝑦 < 𝑎))
1211notbid 657 . . . . . 6 (𝑏 = 𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ 𝑦 < 𝑎))
1312cbvralv 2692 . . . . 5 (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑎)
14 breq1 3985 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑐 < 𝑏𝑧 < 𝑏))
1514cbvrexv 2693 . . . . . . . 8 (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑏)
1615imbi2i 225 . . . . . . 7 ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
1716ralbii 2472 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
18 breq2 3986 . . . . . . . 8 (𝑏 = 𝑦 → (𝑎 < 𝑏𝑎 < 𝑦))
19 breq2 3986 . . . . . . . . 9 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
2019rexbidv 2467 . . . . . . . 8 (𝑏 = 𝑦 → (∃𝑧𝐴 𝑧 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2118, 20imbi12d 233 . . . . . . 7 (𝑏 = 𝑦 → ((𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2221cbvralv 2692 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2317, 22bitri 183 . . . . 5 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2413, 23anbi12i 456 . . . 4 ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524rexbii 2473 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2610, 25sylibr 133 . 2 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
27 renegcl 8159 . . . . . 6 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
2827ad2antlr 481 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → -𝑎 ∈ ℝ)
29 simplr 520 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → 𝑎 ∈ ℝ)
30 simprl 521 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
31 elrabi 2879 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑦 ∈ ℝ)
32 negeq 8091 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → -𝑤 = -𝑦)
3332eleq1d 2235 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (-𝑤𝐴 ↔ -𝑦𝐴))
3433elrab3 2883 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑦𝐴))
3534biimpd 143 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴))
3631, 35mpcom 36 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴)
37 breq1 3985 . . . . . . . . . . . . 13 (𝑏 = -𝑦 → (𝑏 < 𝑎 ↔ -𝑦 < 𝑎))
3837notbid 657 . . . . . . . . . . . 12 (𝑏 = -𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ -𝑦 < 𝑎))
3938rspcv 2826 . . . . . . . . . . 11 (-𝑦𝐴 → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4036, 39syl 14 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4140adantr 274 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
42 ltnegcon1 8361 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4342ancoms 266 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4443notbid 657 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4531, 44sylan 281 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4641, 45sylibrd 168 . . . . . . . 8 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4746ancoms 266 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4847ralrimdva 2546 . . . . . 6 (𝑎 ∈ ℝ → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
4929, 30, 48sylc 62 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦)
50 nfv 1516 . . . . . . . . . . . 12 𝑐(𝜑𝑎 ∈ ℝ)
51 nfcv 2308 . . . . . . . . . . . . 13 𝑐
52 nfv 1516 . . . . . . . . . . . . . 14 𝑐 𝑎 < 𝑏
53 nfre1 2509 . . . . . . . . . . . . . 14 𝑐𝑐𝐴 𝑐 < 𝑏
5452, 53nfim 1560 . . . . . . . . . . . . 13 𝑐(𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5551, 54nfralya 2506 . . . . . . . . . . . 12 𝑐𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5650, 55nfan 1553 . . . . . . . . . . 11 𝑐((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
57 nfv 1516 . . . . . . . . . . 11 𝑐 𝑦 ∈ ℝ
5856, 57nfan 1553 . . . . . . . . . 10 𝑐(((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ)
59 nfv 1516 . . . . . . . . . 10 𝑐 𝑦 < -𝑎
6058, 59nfan 1553 . . . . . . . . 9 𝑐((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎)
61 simplr 520 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐𝐴)
62 infsupneg.ss . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6362sseld 3141 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝐴𝑐 ∈ ℝ))
6463ad6antr 490 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → (𝑐𝐴𝑐 ∈ ℝ))
6561, 64mpd 13 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℝ)
6665renegcld 8278 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ ℝ)
6765recnd 7927 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℂ)
6867negnegd 8200 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐 = 𝑐)
6968, 61eqeltrd 2243 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐𝐴)
70 negeq 8091 . . . . . . . . . . . . 13 (𝑤 = -𝑐 → -𝑤 = --𝑐)
7170eleq1d 2235 . . . . . . . . . . . 12 (𝑤 = -𝑐 → (-𝑤𝐴 ↔ --𝑐𝐴))
7271elrab 2882 . . . . . . . . . . 11 (-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ (-𝑐 ∈ ℝ ∧ --𝑐𝐴))
7366, 69, 72sylanbrc 414 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴})
74 simp-4r 532 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 ∈ ℝ)
75 simpr 109 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 < -𝑦)
7665, 74, 75ltnegcon2d 8424 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 < -𝑐)
77 breq2 3986 . . . . . . . . . . 11 (𝑧 = -𝑐 → (𝑦 < 𝑧𝑦 < -𝑐))
7877rspcev 2830 . . . . . . . . . 10 ((-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑦 < -𝑐) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
7973, 76, 78syl2anc 409 . . . . . . . . 9 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
80 simpllr 524 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑎 ∈ ℝ)
81 simpr 109 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
82 simplr 520 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
8380, 81, 82jca31 307 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
84 ltnegcon2 8362 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8584ancoms 266 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8685adantr 274 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎𝑎 < -𝑦))
87 renegcl 8159 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
88 breq2 3986 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (𝑎 < 𝑏𝑎 < -𝑦))
89 breq2 3986 . . . . . . . . . . . . . . . . . 18 (𝑏 = -𝑦 → (𝑐 < 𝑏𝑐 < -𝑦))
9089rexbidv 2467 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑐𝐴 𝑐 < -𝑦))
9188, 90imbi12d 233 . . . . . . . . . . . . . . . 16 (𝑏 = -𝑦 → ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9291rspcv 2826 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9387, 92syl 14 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9493adantl 275 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9594imp 123 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦))
9686, 95sylbid 149 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎 → ∃𝑐𝐴 𝑐 < -𝑦))
9796imp 123 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9883, 97sylan 281 . . . . . . . . 9 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9960, 79, 98r19.29af 2607 . . . . . . . 8 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
10099ex 114 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
101100ralrimiva 2539 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
102101adantrl 470 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
103 breq1 3985 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑥 < 𝑦 ↔ -𝑎 < 𝑦))
104103notbid 657 . . . . . . . 8 (𝑥 = -𝑎 → (¬ 𝑥 < 𝑦 ↔ ¬ -𝑎 < 𝑦))
105104ralbidv 2466 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
106 breq2 3986 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑦 < 𝑥𝑦 < -𝑎))
107106imbi1d 230 . . . . . . . 8 (𝑥 = -𝑎 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
108107ralbidv 2466 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
109105, 108anbi12d 465 . . . . . 6 (𝑥 = -𝑎 → ((∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
110109rspcev 2830 . . . . 5 ((-𝑎 ∈ ℝ ∧ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
11128, 49, 102, 110syl12anc 1226 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
112111ex 114 . . 3 ((𝜑𝑎 ∈ ℝ) → ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
113112rexlimdva 2583 . 2 (𝜑 → (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
11426, 113mpd 13 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116   class class class wbr 3982  cr 7752   < clt 7933  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072
This theorem is referenced by:  infssuzcldc  11884
  Copyright terms: Public domain W3C validator