ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg GIF version

Theorem infsupneg 9585
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9584. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infsupneg.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infsupneg (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑤,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)

Proof of Theorem infsupneg
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2 breq2 4004 . . . . . . . 8 (𝑎 = 𝑥 → (𝑦 < 𝑎𝑦 < 𝑥))
32notbid 667 . . . . . . 7 (𝑎 = 𝑥 → (¬ 𝑦 < 𝑎 ↔ ¬ 𝑦 < 𝑥))
43ralbidv 2477 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥))
5 breq1 4003 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑦𝑥 < 𝑦))
65imbi1d 231 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
76ralbidv 2477 . . . . . 6 (𝑎 = 𝑥 → (∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
84, 7anbi12d 473 . . . . 5 (𝑎 = 𝑥 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
98cbvrexv 2704 . . . 4 (∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
101, 9sylibr 134 . . 3 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
11 breq1 4003 . . . . . . 7 (𝑏 = 𝑦 → (𝑏 < 𝑎𝑦 < 𝑎))
1211notbid 667 . . . . . 6 (𝑏 = 𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ 𝑦 < 𝑎))
1312cbvralv 2703 . . . . 5 (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑎)
14 breq1 4003 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑐 < 𝑏𝑧 < 𝑏))
1514cbvrexv 2704 . . . . . . . 8 (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑏)
1615imbi2i 226 . . . . . . 7 ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
1716ralbii 2483 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏))
18 breq2 4004 . . . . . . . 8 (𝑏 = 𝑦 → (𝑎 < 𝑏𝑎 < 𝑦))
19 breq2 4004 . . . . . . . . 9 (𝑏 = 𝑦 → (𝑧 < 𝑏𝑧 < 𝑦))
2019rexbidv 2478 . . . . . . . 8 (𝑏 = 𝑦 → (∃𝑧𝐴 𝑧 < 𝑏 ↔ ∃𝑧𝐴 𝑧 < 𝑦))
2118, 20imbi12d 234 . . . . . . 7 (𝑏 = 𝑦 → ((𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2221cbvralv 2703 . . . . . 6 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑧𝐴 𝑧 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2317, 22bitri 184 . . . . 5 (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2413, 23anbi12i 460 . . . 4 ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524rexbii 2484 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ↔ ∃𝑎 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑎 ∧ ∀𝑦 ∈ ℝ (𝑎 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2610, 25sylibr 134 . 2 (𝜑 → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
27 renegcl 8208 . . . . . 6 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
2827ad2antlr 489 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → -𝑎 ∈ ℝ)
29 simplr 528 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → 𝑎 ∈ ℝ)
30 simprl 529 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
31 elrabi 2890 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → 𝑦 ∈ ℝ)
32 negeq 8140 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → -𝑤 = -𝑦)
3332eleq1d 2246 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (-𝑤𝐴 ↔ -𝑦𝐴))
3433elrab3 2894 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ -𝑦𝐴))
3534biimpd 144 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴))
3631, 35mpcom 36 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → -𝑦𝐴)
37 breq1 4003 . . . . . . . . . . . . 13 (𝑏 = -𝑦 → (𝑏 < 𝑎 ↔ -𝑦 < 𝑎))
3837notbid 667 . . . . . . . . . . . 12 (𝑏 = -𝑦 → (¬ 𝑏 < 𝑎 ↔ ¬ -𝑦 < 𝑎))
3938rspcv 2837 . . . . . . . . . . 11 (-𝑦𝐴 → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4036, 39syl 14 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
4140adantr 276 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑦 < 𝑎))
42 ltnegcon1 8410 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4342ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (-𝑎 < 𝑦 ↔ -𝑦 < 𝑎))
4443notbid 667 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4531, 44sylan 283 . . . . . . . . 9 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (¬ -𝑎 < 𝑦 ↔ ¬ -𝑦 < 𝑎))
4641, 45sylibrd 169 . . . . . . . 8 ((𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑎 ∈ ℝ) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4746ancoms 268 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}) → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ¬ -𝑎 < 𝑦))
4847ralrimdva 2557 . . . . . 6 (𝑎 ∈ ℝ → (∀𝑏𝐴 ¬ 𝑏 < 𝑎 → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
4929, 30, 48sylc 62 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦)
50 nfv 1528 . . . . . . . . . . . 12 𝑐(𝜑𝑎 ∈ ℝ)
51 nfcv 2319 . . . . . . . . . . . . 13 𝑐
52 nfv 1528 . . . . . . . . . . . . . 14 𝑐 𝑎 < 𝑏
53 nfre1 2520 . . . . . . . . . . . . . 14 𝑐𝑐𝐴 𝑐 < 𝑏
5452, 53nfim 1572 . . . . . . . . . . . . 13 𝑐(𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5551, 54nfralya 2517 . . . . . . . . . . . 12 𝑐𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)
5650, 55nfan 1565 . . . . . . . . . . 11 𝑐((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
57 nfv 1528 . . . . . . . . . . 11 𝑐 𝑦 ∈ ℝ
5856, 57nfan 1565 . . . . . . . . . 10 𝑐(((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ)
59 nfv 1528 . . . . . . . . . 10 𝑐 𝑦 < -𝑎
6058, 59nfan 1565 . . . . . . . . 9 𝑐((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎)
61 simplr 528 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐𝐴)
62 infsupneg.ss . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
6362sseld 3154 . . . . . . . . . . . . . 14 (𝜑 → (𝑐𝐴𝑐 ∈ ℝ))
6463ad6antr 498 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → (𝑐𝐴𝑐 ∈ ℝ))
6561, 64mpd 13 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℝ)
6665renegcld 8327 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ ℝ)
6765recnd 7976 . . . . . . . . . . . . 13 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 ∈ ℂ)
6867negnegd 8249 . . . . . . . . . . . 12 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐 = 𝑐)
6968, 61eqeltrd 2254 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → --𝑐𝐴)
70 negeq 8140 . . . . . . . . . . . . 13 (𝑤 = -𝑐 → -𝑤 = --𝑐)
7170eleq1d 2246 . . . . . . . . . . . 12 (𝑤 = -𝑐 → (-𝑤𝐴 ↔ --𝑐𝐴))
7271elrab 2893 . . . . . . . . . . 11 (-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ↔ (-𝑐 ∈ ℝ ∧ --𝑐𝐴))
7366, 69, 72sylanbrc 417 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → -𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴})
74 simp-4r 542 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 ∈ ℝ)
75 simpr 110 . . . . . . . . . . 11 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑐 < -𝑦)
7665, 74, 75ltnegcon2d 8473 . . . . . . . . . 10 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → 𝑦 < -𝑐)
77 breq2 4004 . . . . . . . . . . 11 (𝑧 = -𝑐 → (𝑦 < 𝑧𝑦 < -𝑐))
7877rspcev 2841 . . . . . . . . . 10 ((-𝑐 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ∧ 𝑦 < -𝑐) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
7973, 76, 78syl2anc 411 . . . . . . . . 9 (((((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) ∧ 𝑐𝐴) ∧ 𝑐 < -𝑦) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
80 simpllr 534 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑎 ∈ ℝ)
81 simpr 110 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
82 simplr 528 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))
8380, 81, 82jca31 309 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)))
84 ltnegcon2 8411 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8584ancoms 268 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎𝑎 < -𝑦))
8685adantr 276 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎𝑎 < -𝑦))
87 renegcl 8208 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
88 breq2 4004 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (𝑎 < 𝑏𝑎 < -𝑦))
89 breq2 4004 . . . . . . . . . . . . . . . . . 18 (𝑏 = -𝑦 → (𝑐 < 𝑏𝑐 < -𝑦))
9089rexbidv 2478 . . . . . . . . . . . . . . . . 17 (𝑏 = -𝑦 → (∃𝑐𝐴 𝑐 < 𝑏 ↔ ∃𝑐𝐴 𝑐 < -𝑦))
9188, 90imbi12d 234 . . . . . . . . . . . . . . . 16 (𝑏 = -𝑦 → ((𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) ↔ (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9291rspcv 2837 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9387, 92syl 14 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9493adantl 277 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦)))
9594imp 124 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑎 < -𝑦 → ∃𝑐𝐴 𝑐 < -𝑦))
9686, 95sylbid 150 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → (𝑦 < -𝑎 → ∃𝑐𝐴 𝑐 < -𝑦))
9796imp 124 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9883, 97sylan 283 . . . . . . . . 9 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑐𝐴 𝑐 < -𝑦)
9960, 79, 98r19.29af 2618 . . . . . . . 8 (((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < -𝑎) → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)
10099ex 115 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) ∧ 𝑦 ∈ ℝ) → (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
101100ralrimiva 2550 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
102101adantrl 478 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))
103 breq1 4003 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑥 < 𝑦 ↔ -𝑎 < 𝑦))
104103notbid 667 . . . . . . . 8 (𝑥 = -𝑎 → (¬ 𝑥 < 𝑦 ↔ ¬ -𝑎 < 𝑦))
105104ralbidv 2477 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦))
106 breq2 4004 . . . . . . . . 9 (𝑥 = -𝑎 → (𝑦 < 𝑥𝑦 < -𝑎))
107106imbi1d 231 . . . . . . . 8 (𝑥 = -𝑎 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
108107ralbidv 2477 . . . . . . 7 (𝑥 = -𝑎 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
109105, 108anbi12d 473 . . . . . 6 (𝑥 = -𝑎 → ((∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
110109rspcev 2841 . . . . 5 ((-𝑎 ∈ ℝ ∧ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ -𝑎 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -𝑎 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
11128, 49, 102, 110syl12anc 1236 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
112111ex 115 . . 3 ((𝜑𝑎 ∈ ℝ) → ((∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
113112rexlimdva 2594 . 2 (𝜑 → (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → ∃𝑐𝐴 𝑐 < 𝑏)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧))))
11426, 113mpd 13 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3129   class class class wbr 4000  cr 7801   < clt 7982  -cneg 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121
This theorem is referenced by:  infssuzcldc  11935
  Copyright terms: Public domain W3C validator