ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv GIF version

Theorem r19.28mv 3507
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜑
21r19.28m 3504 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1485  wcel 2141  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-ral 2453
This theorem is referenced by:  iinrabm  3935  iindif2m  3940  iinin2m  3941  xpiindim  4748  fintm  5383  ixpiinm  6702  neipsm  12948
  Copyright terms: Public domain W3C validator