ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv GIF version

Theorem r19.28mv 3501
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1516 . 2 𝑥𝜑
21r19.28m 3498 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1480  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-ral 2449
This theorem is referenced by:  iinrabm  3928  iindif2m  3933  iinin2m  3934  xpiindim  4741  fintm  5373  ixpiinm  6690  neipsm  12794
  Copyright terms: Public domain W3C validator