ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv GIF version

Theorem r19.28mv 3539
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜑
21r19.28m 3536 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1503  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-ral 2477
This theorem is referenced by:  iinrabm  3975  iindif2m  3980  iinin2m  3981  xpiindim  4799  fintm  5439  ixpiinm  6778  neipsm  14322
  Copyright terms: Public domain W3C validator