ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv GIF version

Theorem r19.28mv 3517
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜑
21r19.28m 3514 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1492  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-cleq 2170  df-clel 2173  df-ral 2460
This theorem is referenced by:  iinrabm  3951  iindif2m  3956  iinin2m  3957  xpiindim  4766  fintm  5403  ixpiinm  6726  neipsm  13739
  Copyright terms: Public domain W3C validator