![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.28mv | GIF version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
r19.28mv | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1476 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.28m 3399 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1436 ∈ wcel 1448 ∀wral 2375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-cleq 2093 df-clel 2096 df-ral 2380 |
This theorem is referenced by: iinrabm 3822 iindif2m 3827 iinin2m 3828 xpiindim 4614 fintm 5244 ixpiinm 6548 neipsm 12105 |
Copyright terms: Public domain | W3C validator |