ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc GIF version

Theorem ltexprlemloc 7667
Description: Our constructed difference is located. Lemma for ltexpri 7673. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemloc (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemloc
Dummy variables 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7469 . . . . . 6 (𝑞 <Q 𝑟 → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
21adantl 277 . . . . 5 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
3 ltrelpr 7565 . . . . . . . . . 10 <P ⊆ (P × P)
43brel 4711 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
54simpld 112 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
6 prop 7535 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 7563 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
86, 7sylan 283 . . . . . . . 8 ((𝐴P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
95, 8sylan 283 . . . . . . 7 ((𝐴<P 𝐵𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
109ad2ant2r 509 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
114simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
1211ad2antrr 488 . . . . . . . . . . . . 13 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → 𝐵P)
1312ad2antrr 488 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → 𝐵P)
14 ltanqg 7460 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1514adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
16 elprnqu 7542 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
176, 16sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
185, 17sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
1918adantlr 477 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2019ad2ant2rl 511 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑦Q)
21 elprnql 7541 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
226, 21sylan 283 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
235, 22sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2423adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
2524ad2ant2r 509 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑧Q)
26 simplrl 535 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑤Q)
27 addclnq 7435 . . . . . . . . . . . . . . . 16 ((𝑧Q𝑤Q) → (𝑧 +Q 𝑤) ∈ Q)
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q 𝑤) ∈ Q)
29 ltrelnq 7425 . . . . . . . . . . . . . . . . . . 19 <Q ⊆ (Q × Q)
3029brel 4711 . . . . . . . . . . . . . . . . . 18 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
3130simpld 112 . . . . . . . . . . . . . . . . 17 (𝑞 <Q 𝑟𝑞Q)
3231adantl 277 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑞 <Q 𝑟) → 𝑞Q)
3332ad2antrr 488 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑞Q)
34 addcomnqg 7441 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3534adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3615, 20, 28, 33, 35caovord2d 6088 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞)))
37 addassnqg 7442 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑤Q𝑞Q) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
3825, 26, 33, 37syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
39 addcomnqg 7441 . . . . . . . . . . . . . . . . . 18 ((𝑤Q𝑞Q) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4026, 33, 39syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4140oveq2d 5934 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑤 +Q 𝑞)) = (𝑧 +Q (𝑞 +Q 𝑤)))
42 simplrr 536 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑞 +Q 𝑤) = 𝑟)
4342oveq2d 5934 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑞 +Q 𝑤)) = (𝑧 +Q 𝑟))
4438, 41, 433eqtrd 2230 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q 𝑟))
4544breq2d 4041 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4636, 45bitrd 188 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4746biimpa 296 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟))
48 prop 7535 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
49 prloc 7551 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5048, 49sylan 283 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5113, 47, 50syl2anc 411 . . . . . . . . . . 11 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5251ex 115 . . . . . . . . . 10 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5352anassrs 400 . . . . . . . . 9 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5453reximdva 2596 . . . . . . . 8 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) → (∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5554reximdva 2596 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
56 prml 7537 . . . . . . . . . . . 12 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (1st𝐴))
57 rexex 2540 . . . . . . . . . . . 12 (∃𝑧Q 𝑧 ∈ (1st𝐴) → ∃𝑧 𝑧 ∈ (1st𝐴))
586, 56, 573syl 17 . . . . . . . . . . 11 (𝐴P → ∃𝑧 𝑧 ∈ (1st𝐴))
59 r19.45mv 3540 . . . . . . . . . . 11 (∃𝑧 𝑧 ∈ (1st𝐴) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
605, 58, 593syl 17 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
6160adantr 276 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
62 prmu 7538 . . . . . . . . . . . . 13 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
63 rexex 2540 . . . . . . . . . . . . 13 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑥 𝑥 ∈ (2nd𝐴))
646, 62, 633syl 17 . . . . . . . . . . . 12 (𝐴P → ∃𝑥 𝑥 ∈ (2nd𝐴))
65 r19.43 2652 . . . . . . . . . . . . 13 (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
66 r19.9rmv 3538 . . . . . . . . . . . . . 14 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
6766orbi2d 791 . . . . . . . . . . . . 13 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
6865, 67bitr4id 199 . . . . . . . . . . . 12 (∃𝑥 𝑥 ∈ (2nd𝐴) → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
695, 64, 683syl 17 . . . . . . . . . . 11 (𝐴<P 𝐵 → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7069rexbidv 2495 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7170adantr 276 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
72 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
7372ltexprlemell 7658 . . . . . . . . . . . . 13 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
7472ltexprlemelu 7659 . . . . . . . . . . . . . 14 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
75 eleq1 2256 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
76 oveq1 5925 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑟) = (𝑧 +Q 𝑟))
7776eleq1d 2262 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑟) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
7875, 77anbi12d 473 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7978cbvexv 1930 . . . . . . . . . . . . . . 15 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
8079anbi2i 457 . . . . . . . . . . . . . 14 ((𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8174, 80bitri 184 . . . . . . . . . . . . 13 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8273, 81orbi12i 765 . . . . . . . . . . . 12 ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
83 ibar 301 . . . . . . . . . . . . . . 15 (𝑞Q → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
8483adantr 276 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
85 ibar 301 . . . . . . . . . . . . . . 15 (𝑟Q → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
8685adantl 277 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
8784, 86orbi12d 794 . . . . . . . . . . . . 13 ((𝑞Q𝑟Q) → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
8830, 87syl 14 . . . . . . . . . . . 12 (𝑞 <Q 𝑟 → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
8982, 88bitr4id 199 . . . . . . . . . . 11 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
90 df-rex 2478 . . . . . . . . . . . 12 (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
91 df-rex 2478 . . . . . . . . . . . 12 (∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
9290, 91orbi12i 765 . . . . . . . . . . 11 ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9389, 92bitr4di 198 . . . . . . . . . 10 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9493adantl 277 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9561, 71, 943bitr4rd 221 . . . . . . . 8 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9695adantr 276 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9755, 96sylibrd 169 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
9810, 97mpd 13 . . . . 5 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
992, 98rexlimddv 2616 . . . 4 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
10099ex 115 . . 3 (𝐴<P 𝐵 → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
101100ralrimivw 2568 . 2 (𝐴<P 𝐵 → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
102101ralrimivw 2568 1 (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iltp 7530
This theorem is referenced by:  ltexprlempr  7668
  Copyright terms: Public domain W3C validator