ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc GIF version

Theorem ltexprlemloc 7755
Description: Our constructed difference is located. Lemma for ltexpri 7761. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemloc (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemloc
Dummy variables 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7557 . . . . . 6 (𝑞 <Q 𝑟 → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
21adantl 277 . . . . 5 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ∃𝑤Q (𝑞 +Q 𝑤) = 𝑟)
3 ltrelpr 7653 . . . . . . . . . 10 <P ⊆ (P × P)
43brel 4745 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
54simpld 112 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
6 prop 7623 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 7651 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
86, 7sylan 283 . . . . . . . 8 ((𝐴P𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
95, 8sylan 283 . . . . . . 7 ((𝐴<P 𝐵𝑤Q) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
109ad2ant2r 509 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤))
114simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
1211ad2antrr 488 . . . . . . . . . . . . 13 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → 𝐵P)
1312ad2antrr 488 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → 𝐵P)
14 ltanqg 7548 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1514adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
16 elprnqu 7630 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
176, 16sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
185, 17sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
1918adantlr 477 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2019ad2ant2rl 511 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑦Q)
21 elprnql 7629 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
226, 21sylan 283 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
235, 22sylan 283 . . . . . . . . . . . . . . . . . 18 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2423adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
2524ad2ant2r 509 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑧Q)
26 simplrl 535 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑤Q)
27 addclnq 7523 . . . . . . . . . . . . . . . 16 ((𝑧Q𝑤Q) → (𝑧 +Q 𝑤) ∈ Q)
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q 𝑤) ∈ Q)
29 ltrelnq 7513 . . . . . . . . . . . . . . . . . . 19 <Q ⊆ (Q × Q)
3029brel 4745 . . . . . . . . . . . . . . . . . 18 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
3130simpld 112 . . . . . . . . . . . . . . . . 17 (𝑞 <Q 𝑟𝑞Q)
3231adantl 277 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑞 <Q 𝑟) → 𝑞Q)
3332ad2antrr 488 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → 𝑞Q)
34 addcomnqg 7529 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3534adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3615, 20, 28, 33, 35caovord2d 6139 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞)))
37 addassnqg 7530 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑤Q𝑞Q) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
3825, 26, 33, 37syl3anc 1250 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q (𝑤 +Q 𝑞)))
39 addcomnqg 7529 . . . . . . . . . . . . . . . . . 18 ((𝑤Q𝑞Q) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4026, 33, 39syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑤 +Q 𝑞) = (𝑞 +Q 𝑤))
4140oveq2d 5983 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑤 +Q 𝑞)) = (𝑧 +Q (𝑞 +Q 𝑤)))
42 simplrr 536 . . . . . . . . . . . . . . . . 17 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑞 +Q 𝑤) = 𝑟)
4342oveq2d 5983 . . . . . . . . . . . . . . . 16 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑧 +Q (𝑞 +Q 𝑤)) = (𝑧 +Q 𝑟))
4438, 41, 433eqtrd 2244 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑧 +Q 𝑤) +Q 𝑞) = (𝑧 +Q 𝑟))
4544breq2d 4071 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → ((𝑦 +Q 𝑞) <Q ((𝑧 +Q 𝑤) +Q 𝑞) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4636, 45bitrd 188 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)))
4746biimpa 296 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟))
48 prop 7623 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
49 prloc 7639 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5048, 49sylan 283 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑟)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5113, 47, 50syl2anc 411 . . . . . . . . . . 11 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) ∧ 𝑦 <Q (𝑧 +Q 𝑤)) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
5251ex 115 . . . . . . . . . 10 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴))) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5352anassrs 400 . . . . . . . . 9 (((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) ∧ 𝑦 ∈ (2nd𝐴)) → (𝑦 <Q (𝑧 +Q 𝑤) → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5453reximdva 2610 . . . . . . . 8 ((((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) ∧ 𝑧 ∈ (1st𝐴)) → (∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
5554reximdva 2610 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
56 prml 7625 . . . . . . . . . . . 12 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (1st𝐴))
57 rexex 2554 . . . . . . . . . . . 12 (∃𝑧Q 𝑧 ∈ (1st𝐴) → ∃𝑧 𝑧 ∈ (1st𝐴))
586, 56, 573syl 17 . . . . . . . . . . 11 (𝐴P → ∃𝑧 𝑧 ∈ (1st𝐴))
59 r19.45mv 3562 . . . . . . . . . . 11 (∃𝑧 𝑧 ∈ (1st𝐴) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
605, 58, 593syl 17 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
6160adantr 276 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
62 prmu 7626 . . . . . . . . . . . . 13 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd𝐴))
63 rexex 2554 . . . . . . . . . . . . 13 (∃𝑥Q 𝑥 ∈ (2nd𝐴) → ∃𝑥 𝑥 ∈ (2nd𝐴))
646, 62, 633syl 17 . . . . . . . . . . . 12 (𝐴P → ∃𝑥 𝑥 ∈ (2nd𝐴))
65 r19.43 2666 . . . . . . . . . . . . 13 (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
66 r19.9rmv 3560 . . . . . . . . . . . . . 14 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)))
6766orbi2d 792 . . . . . . . . . . . . 13 (∃𝑥 𝑥 ∈ (2nd𝐴) → ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑦 ∈ (2nd𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
6865, 67bitr4id 199 . . . . . . . . . . . 12 (∃𝑥 𝑥 ∈ (2nd𝐴) → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
695, 64, 683syl 17 . . . . . . . . . . 11 (𝐴<P 𝐵 → (∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7069rexbidv 2509 . . . . . . . . . 10 (𝐴<P 𝐵 → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7170adantr 276 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)(∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
72 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
7372ltexprlemell 7746 . . . . . . . . . . . . 13 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
7472ltexprlemelu 7747 . . . . . . . . . . . . . 14 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
75 eleq1 2270 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
76 oveq1 5974 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑟) = (𝑧 +Q 𝑟))
7776eleq1d 2276 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑟) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
7875, 77anbi12d 473 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
7978cbvexv 1943 . . . . . . . . . . . . . . 15 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
8079anbi2i 457 . . . . . . . . . . . . . 14 ((𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8174, 80bitri 184 . . . . . . . . . . . . 13 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
8273, 81orbi12i 766 . . . . . . . . . . . 12 ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
83 ibar 301 . . . . . . . . . . . . . . 15 (𝑞Q → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
8483adantr 276 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
85 ibar 301 . . . . . . . . . . . . . . 15 (𝑟Q → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
8685adantl 277 . . . . . . . . . . . . . 14 ((𝑞Q𝑟Q) → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
8784, 86orbi12d 795 . . . . . . . . . . . . 13 ((𝑞Q𝑟Q) → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
8830, 87syl 14 . . . . . . . . . . . 12 (𝑞 <Q 𝑟 → ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∨ (𝑟Q ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))))
8982, 88bitr4id 199 . . . . . . . . . . 11 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))))
90 df-rex 2492 . . . . . . . . . . . 12 (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
91 df-rex 2492 . . . . . . . . . . . 12 (∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵)))
9290, 91orbi12i 766 . . . . . . . . . . 11 ((∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∨ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9389, 92bitr4di 198 . . . . . . . . . 10 (𝑞 <Q 𝑟 → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9493adantl 277 . . . . . . . . 9 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ (∃𝑦 ∈ (2nd𝐴)(𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ ∃𝑧 ∈ (1st𝐴)(𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9561, 71, 943bitr4rd 221 . . . . . . . 8 ((𝐴<P 𝐵𝑞 <Q 𝑟) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9695adantr 276 . . . . . . 7 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → ((𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)((𝑦 +Q 𝑞) ∈ (1st𝐵) ∨ (𝑧 +Q 𝑟) ∈ (2nd𝐵))))
9755, 96sylibrd 169 . . . . . 6 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (∃𝑧 ∈ (1st𝐴)∃𝑦 ∈ (2nd𝐴)𝑦 <Q (𝑧 +Q 𝑤) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
9810, 97mpd 13 . . . . 5 (((𝐴<P 𝐵𝑞 <Q 𝑟) ∧ (𝑤Q ∧ (𝑞 +Q 𝑤) = 𝑟)) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
992, 98rexlimddv 2630 . . . 4 ((𝐴<P 𝐵𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶)))
10099ex 115 . . 3 (𝐴<P 𝐵 → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
101100ralrimivw 2582 . 2 (𝐴<P 𝐵 → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
102101ralrimivw 2582 1 (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wex 1516  wcel 2178  wral 2486  wrex 2487  {crab 2490  cop 3646   class class class wbr 4059  cfv 5290  (class class class)co 5967  1st c1st 6247  2nd c2nd 6248  Qcnq 7428   +Q cplq 7430   <Q cltq 7433  Pcnp 7439  <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iltp 7618
This theorem is referenced by:  ltexprlempr  7756
  Copyright terms: Public domain W3C validator