ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabid GIF version

Theorem rabid 2564
Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
Assertion
Ref Expression
rabid (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))

Proof of Theorem rabid
StepHypRef Expression
1 df-rab 2384 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21abeq2i 2210 1 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1448  {crab 2379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-rab 2384
This theorem is referenced by:  rabeq2i  2638  rabn0m  3337  repizf2lem  4025  rabxfrd  4328  onintrab2im  4372  tfis  4435  imasnopn  12249
  Copyright terms: Public domain W3C validator