ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlempr GIF version

Theorem suplocsrlempr 7874
Description: Lemma for suplocsr 7876. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
suplocsrlem.ss (𝜑𝐴R)
suplocsrlem.c (𝜑𝐶𝐴)
suplocsrlem.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsrlem.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsrlempr (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Distinct variable groups:   𝑤,𝐴,𝑣,𝑦   𝑢,𝐴,𝑥,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑧   𝑤,𝐶,𝑣,𝑥,𝑦   𝑢,𝐶,𝑧   𝜑,𝑢,𝑣,𝑤,𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)

Proof of Theorem suplocsrlempr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suplocsrlem.ss . . . . . . . 8 (𝜑𝐴R)
2 suplocsrlem.c . . . . . . . 8 (𝜑𝐶𝐴)
31, 2sseldd 3184 . . . . . . 7 (𝜑𝐶R)
4 0idsr 7834 . . . . . . 7 (𝐶R → (𝐶 +R 0R) = 𝐶)
53, 4syl 14 . . . . . 6 (𝜑 → (𝐶 +R 0R) = 𝐶)
65, 2eqeltrd 2273 . . . . 5 (𝜑 → (𝐶 +R 0R) ∈ 𝐴)
7 1pr 7621 . . . . 5 1PP
86, 7jctil 312 . . . 4 (𝜑 → (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
9 opeq1 3808 . . . . . . . . 9 (𝑤 = 1P → ⟨𝑤, 1P⟩ = ⟨1P, 1P⟩)
109eceq1d 6628 . . . . . . . 8 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = [⟨1P, 1P⟩] ~R )
11 df-0r 7798 . . . . . . . 8 0R = [⟨1P, 1P⟩] ~R
1210, 11eqtr4di 2247 . . . . . . 7 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = 0R)
1312oveq2d 5938 . . . . . 6 (𝑤 = 1P → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R 0R))
1413eleq1d 2265 . . . . 5 (𝑤 = 1P → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R 0R) ∈ 𝐴))
15 suplocsrlem.b . . . . 5 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
1614, 15elrab2 2923 . . . 4 (1P𝐵 ↔ (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
178, 16sylibr 134 . . 3 (𝜑 → 1P𝐵)
18 elex2 2779 . . 3 (1P𝐵 → ∃𝑣 𝑣𝐵)
1917, 18syl 14 . 2 (𝜑 → ∃𝑣 𝑣𝐵)
20 suplocsrlem.ub . . . 4 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
21 breq1 4036 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝑦 <R 𝑥𝐶 <R 𝑥))
2221rspccv 2865 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴𝐶 <R 𝑥))
232, 22mpan9 281 . . . . . . . 8 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → 𝐶 <R 𝑥)
24 0lt1sr 7832 . . . . . . . . . . . . . 14 0R <R 1R
25 0r 7817 . . . . . . . . . . . . . . 15 0RR
26 1sr 7818 . . . . . . . . . . . . . . 15 1RR
27 m1r 7819 . . . . . . . . . . . . . . 15 -1RR
28 ltasrg 7837 . . . . . . . . . . . . . . 15 ((0RR ∧ 1RR ∧ -1RR) → (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R)))
2925, 26, 27, 28mp3an 1348 . . . . . . . . . . . . . 14 (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R))
3024, 29mpbi 145 . . . . . . . . . . . . 13 (-1R +R 0R) <R (-1R +R 1R)
31 0idsr 7834 . . . . . . . . . . . . . 14 (-1RR → (-1R +R 0R) = -1R)
3227, 31ax-mp 5 . . . . . . . . . . . . 13 (-1R +R 0R) = -1R
33 m1p1sr 7827 . . . . . . . . . . . . 13 (-1R +R 1R) = 0R
3430, 32, 333brtr3i 4062 . . . . . . . . . . . 12 -1R <R 0R
35 ltasrg 7837 . . . . . . . . . . . . 13 ((-1RR ∧ 0RR𝐶R) → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3627, 25, 3, 35mp3an12i 1352 . . . . . . . . . . . 12 (𝜑 → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3734, 36mpbii 148 . . . . . . . . . . 11 (𝜑 → (𝐶 +R -1R) <R (𝐶 +R 0R))
3837, 5breqtrd 4059 . . . . . . . . . 10 (𝜑 → (𝐶 +R -1R) <R 𝐶)
39 ltsosr 7831 . . . . . . . . . . 11 <R Or R
40 ltrelsr 7805 . . . . . . . . . . 11 <R ⊆ (R × R)
4139, 40sotri 5065 . . . . . . . . . 10 (((𝐶 +R -1R) <R 𝐶𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
4238, 41sylan 283 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
43 map2psrprg 7872 . . . . . . . . . . 11 (𝐶R → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
443, 43syl 14 . . . . . . . . . 10 (𝜑 → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4544adantr 276 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4642, 45mpbid 147 . . . . . . . 8 ((𝜑𝐶 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
4723, 46syldan 282 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
48 breq1 4036 . . . . . . . . . . 11 (𝑦 = (𝐶 +R [⟨𝑤, 1P⟩] ~R ) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
49 simpllr 534 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R 𝑥)
50 breq2 4037 . . . . . . . . . . . . . . 15 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑦 <R 𝑥))
5150ralbidv 2497 . . . . . . . . . . . . . 14 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5251adantl 277 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5349, 52mpbird 167 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5453adantr 276 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5515rabeq2i 2760 . . . . . . . . . . . . 13 (𝑤𝐵 ↔ (𝑤P ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
5655simprbi 275 . . . . . . . . . . . 12 (𝑤𝐵 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5756adantl 277 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5848, 54, 57rspcdva 2873 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5958ralrimiva 2570 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6059ex 115 . . . . . . . 8 (((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6160reximdva 2599 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → (∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6247, 61mpd 13 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6362ex 115 . . . . 5 (𝜑 → (∀𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6463rexlimdvw 2618 . . . 4 (𝜑 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6520, 64mpd 13 . . 3 (𝜑 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
66 elrabi 2917 . . . . . . . 8 (𝑤 ∈ {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴} → 𝑤P)
67 opeq1 3808 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → ⟨𝑤, 1P⟩ = ⟨𝑎, 1P⟩)
6867eceq1d 6628 . . . . . . . . . . . 12 (𝑤 = 𝑎 → [⟨𝑤, 1P⟩] ~R = [⟨𝑎, 1P⟩] ~R )
6968oveq2d 5938 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑎, 1P⟩] ~R ))
7069eleq1d 2265 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴))
7170cbvrabv 2762 . . . . . . . . 9 {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴} = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7215, 71eqtri 2217 . . . . . . . 8 𝐵 = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7366, 72eleq2s 2291 . . . . . . 7 (𝑤𝐵𝑤P)
7473adantl 277 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑤P)
75 simplr 528 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑣P)
763ad2antrr 488 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝐶R)
77 ltpsrprg 7870 . . . . . 6 ((𝑤P𝑣P𝐶R) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7874, 75, 76, 77syl3anc 1249 . . . . 5 (((𝜑𝑣P) ∧ 𝑤𝐵) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7978ralbidva 2493 . . . 4 ((𝜑𝑣P) → (∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑤𝐵 𝑤<P 𝑣))
8079rexbidva 2494 . . 3 (𝜑 → (∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
8165, 80mpbid 147 . 2 (𝜑 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣)
82 suplocsrlem.loc . . 3 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
8315, 1, 2, 20, 82suplocsrlemb 7873 . 2 (𝜑 → ∀𝑣P𝑤P (𝑣<P 𝑤 → (∃𝑢𝐵 𝑣<P 𝑢 ∨ ∀𝑢𝐵 𝑢<P 𝑤)))
8419, 81, 83suplocexpr 7792 1 (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  cop 3625   class class class wbr 4033  (class class class)co 5922  [cec 6590  Pcnp 7358  1Pc1p 7359  <P cltp 7362   ~R cer 7363  Rcnr 7364  0Rc0r 7365  1Rc1r 7366  -1Rcm1r 7367   +R cplr 7368   <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-ltr 7797  df-0r 7798  df-1r 7799  df-m1r 7800
This theorem is referenced by:  suplocsrlem  7875
  Copyright terms: Public domain W3C validator