Step | Hyp | Ref
| Expression |
1 | | suplocsrlem.ss |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ R) |
2 | | suplocsrlem.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
3 | 1, 2 | sseldd 3143 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ R) |
4 | | 0idsr 7708 |
. . . . . . 7
⊢ (𝐶 ∈ R →
(𝐶
+R 0R) = 𝐶) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝐶 +R
0R) = 𝐶) |
6 | 5, 2 | eqeltrd 2243 |
. . . . 5
⊢ (𝜑 → (𝐶 +R
0R) ∈ 𝐴) |
7 | | 1pr 7495 |
. . . . 5
⊢
1P ∈ P |
8 | 6, 7 | jctil 310 |
. . . 4
⊢ (𝜑 →
(1P ∈ P ∧ (𝐶 +R
0R) ∈ 𝐴)) |
9 | | opeq1 3758 |
. . . . . . . . 9
⊢ (𝑤 = 1P
→ 〈𝑤,
1P〉 = 〈1P,
1P〉) |
10 | 9 | eceq1d 6537 |
. . . . . . . 8
⊢ (𝑤 = 1P
→ [〈𝑤,
1P〉] ~R =
[〈1P, 1P〉]
~R ) |
11 | | df-0r 7672 |
. . . . . . . 8
⊢
0R = [〈1P,
1P〉] ~R |
12 | 10, 11 | eqtr4di 2217 |
. . . . . . 7
⊢ (𝑤 = 1P
→ [〈𝑤,
1P〉] ~R =
0R) |
13 | 12 | oveq2d 5858 |
. . . . . 6
⊢ (𝑤 = 1P
→ (𝐶
+R [〈𝑤, 1P〉]
~R ) = (𝐶 +R
0R)) |
14 | 13 | eleq1d 2235 |
. . . . 5
⊢ (𝑤 = 1P
→ ((𝐶
+R [〈𝑤, 1P〉]
~R ) ∈ 𝐴 ↔ (𝐶 +R
0R) ∈ 𝐴)) |
15 | | suplocsrlem.b |
. . . . 5
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴} |
16 | 14, 15 | elrab2 2885 |
. . . 4
⊢
(1P ∈ 𝐵 ↔ (1P ∈
P ∧ (𝐶
+R 0R) ∈ 𝐴)) |
17 | 8, 16 | sylibr 133 |
. . 3
⊢ (𝜑 →
1P ∈ 𝐵) |
18 | | elex2 2742 |
. . 3
⊢
(1P ∈ 𝐵 → ∃𝑣 𝑣 ∈ 𝐵) |
19 | 17, 18 | syl 14 |
. 2
⊢ (𝜑 → ∃𝑣 𝑣 ∈ 𝐵) |
20 | | suplocsrlem.ub |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
21 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐶 → (𝑦 <R 𝑥 ↔ 𝐶 <R 𝑥)) |
22 | 21 | rspccv 2827 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (𝐶 ∈ 𝐴 → 𝐶 <R 𝑥)) |
23 | 2, 22 | mpan9 279 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → 𝐶 <R 𝑥) |
24 | | 0lt1sr 7706 |
. . . . . . . . . . . . . 14
⊢
0R <R
1R |
25 | | 0r 7691 |
. . . . . . . . . . . . . . 15
⊢
0R ∈ R |
26 | | 1sr 7692 |
. . . . . . . . . . . . . . 15
⊢
1R ∈ R |
27 | | m1r 7693 |
. . . . . . . . . . . . . . 15
⊢
-1R ∈ R |
28 | | ltasrg 7711 |
. . . . . . . . . . . . . . 15
⊢
((0R ∈ R ∧
1R ∈ R ∧
-1R ∈ R) →
(0R <R
1R ↔ (-1R
+R 0R)
<R (-1R
+R 1R))) |
29 | 25, 26, 27, 28 | mp3an 1327 |
. . . . . . . . . . . . . 14
⊢
(0R <R
1R ↔ (-1R
+R 0R)
<R (-1R
+R 1R)) |
30 | 24, 29 | mpbi 144 |
. . . . . . . . . . . . 13
⊢
(-1R +R
0R) <R
(-1R +R
1R) |
31 | | 0idsr 7708 |
. . . . . . . . . . . . . 14
⊢
(-1R ∈ R →
(-1R +R
0R) = -1R) |
32 | 27, 31 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(-1R +R
0R) = -1R |
33 | | m1p1sr 7701 |
. . . . . . . . . . . . 13
⊢
(-1R +R
1R) = 0R |
34 | 30, 32, 33 | 3brtr3i 4011 |
. . . . . . . . . . . 12
⊢
-1R <R
0R |
35 | | ltasrg 7711 |
. . . . . . . . . . . . 13
⊢
((-1R ∈ R ∧
0R ∈ R ∧ 𝐶 ∈ R) →
(-1R <R
0R ↔ (𝐶 +R
-1R) <R (𝐶 +R
0R))) |
36 | 27, 25, 3, 35 | mp3an12i 1331 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(-1R <R
0R ↔ (𝐶 +R
-1R) <R (𝐶 +R
0R))) |
37 | 34, 36 | mpbii 147 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 +R
-1R) <R (𝐶 +R
0R)) |
38 | 37, 5 | breqtrd 4008 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 +R
-1R) <R 𝐶) |
39 | | ltsosr 7705 |
. . . . . . . . . . 11
⊢
<R Or R |
40 | | ltrelsr 7679 |
. . . . . . . . . . 11
⊢
<R ⊆ (R ×
R) |
41 | 39, 40 | sotri 4999 |
. . . . . . . . . 10
⊢ (((𝐶 +R
-1R) <R 𝐶 ∧ 𝐶 <R 𝑥) → (𝐶 +R
-1R) <R 𝑥) |
42 | 38, 41 | sylan 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 <R 𝑥) → (𝐶 +R
-1R) <R 𝑥) |
43 | | map2psrprg 7746 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ R →
((𝐶
+R -1R)
<R 𝑥 ↔ ∃𝑣 ∈ P (𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥)) |
44 | 3, 43 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 +R
-1R) <R 𝑥 ↔ ∃𝑣 ∈ P (𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥)) |
45 | 44 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 <R 𝑥) → ((𝐶 +R
-1R) <R 𝑥 ↔ ∃𝑣 ∈ P (𝐶 +R [〈𝑣,
1P〉] ~R ) = 𝑥)) |
46 | 42, 45 | mpbid 146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 <R 𝑥) → ∃𝑣 ∈ P (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) |
47 | 23, 46 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑣 ∈ P (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) |
48 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐶 +R [〈𝑤,
1P〉] ~R ) → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) ↔ (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) |
49 | | simpllr 524 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
50 | | breq2 3986 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) ↔ 𝑦 <R
𝑥)) |
51 | 50 | ralbidv 2466 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) ↔
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥)) |
52 | 51 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) → (∀𝑦 ∈ 𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) ↔
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥)) |
53 | 49, 52 | mpbird 166 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
)) |
54 | 53 | adantr 274 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) ∧ 𝑤 ∈ 𝐵) → ∀𝑦 ∈ 𝐴 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
)) |
55 | 15 | rabeq2i 2723 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐵 ↔ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴)) |
56 | 55 | simprbi 273 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐵 → (𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴) |
57 | 56 | adantl 275 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) ∧ 𝑤 ∈ 𝐵) → (𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴) |
58 | 48, 54, 57 | rspcdva 2835 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) ∧ 𝑤 ∈ 𝐵) → (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
59 | 58 | ralrimiva 2539 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥) → ∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
60 | 59 | ex 114 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ∧ 𝑣 ∈ P) → ((𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → ∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) |
61 | 60 | reximdva 2568 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → (∃𝑣 ∈ P (𝐶 +R
[〈𝑣,
1P〉] ~R ) = 𝑥 → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) |
62 | 47, 61 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
63 | 62 | ex 114 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) |
64 | 63 | rexlimdvw 2587 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑣 ∈ P
∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
))) |
65 | 20, 64 | mpd 13 |
. . 3
⊢ (𝜑 → ∃𝑣 ∈ P ∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
66 | | elrabi 2879 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑎 ∈ P ∣ (𝐶 +R
[〈𝑎,
1P〉] ~R ) ∈ 𝐴} → 𝑤 ∈ P) |
67 | | opeq1 3758 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑎 → 〈𝑤, 1P〉 =
〈𝑎,
1P〉) |
68 | 67 | eceq1d 6537 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑎 → [〈𝑤, 1P〉]
~R = [〈𝑎, 1P〉]
~R ) |
69 | 68 | oveq2d 5858 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (𝐶 +R [〈𝑤,
1P〉] ~R ) = (𝐶 +R
[〈𝑎,
1P〉] ~R
)) |
70 | 69 | eleq1d 2235 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑎 → ((𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴 ↔ (𝐶 +R [〈𝑎,
1P〉] ~R ) ∈ 𝐴)) |
71 | 70 | cbvrabv 2725 |
. . . . . . . . 9
⊢ {𝑤 ∈ P ∣
(𝐶
+R [〈𝑤, 1P〉]
~R ) ∈ 𝐴} = {𝑎 ∈ P ∣ (𝐶 +R
[〈𝑎,
1P〉] ~R ) ∈ 𝐴} |
72 | 15, 71 | eqtri 2186 |
. . . . . . . 8
⊢ 𝐵 = {𝑎 ∈ P ∣ (𝐶 +R
[〈𝑎,
1P〉] ~R ) ∈ 𝐴} |
73 | 66, 72 | eleq2s 2261 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ P) |
74 | 73 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ P) |
75 | | simplr 520 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ 𝑤 ∈ 𝐵) → 𝑣 ∈ P) |
76 | 3 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ 𝑤 ∈ 𝐵) → 𝐶 ∈ R) |
77 | | ltpsrprg 7744 |
. . . . . 6
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P
∧ 𝐶 ∈
R) → ((𝐶
+R [〈𝑤, 1P〉]
~R ) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑤<P
𝑣)) |
78 | 74, 75, 76, 77 | syl3anc 1228 |
. . . . 5
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ 𝑤 ∈ 𝐵) → ((𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑤<P
𝑣)) |
79 | 78 | ralbidva 2462 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
(∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔
∀𝑤 ∈ 𝐵 𝑤<P 𝑣)) |
80 | 79 | rexbidva 2463 |
. . 3
⊢ (𝜑 → (∃𝑣 ∈ P ∀𝑤 ∈ 𝐵 (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔
∃𝑣 ∈
P ∀𝑤
∈ 𝐵 𝑤<P 𝑣)) |
81 | 65, 80 | mpbid 146 |
. 2
⊢ (𝜑 → ∃𝑣 ∈ P ∀𝑤 ∈ 𝐵 𝑤<P 𝑣) |
82 | | suplocsrlem.loc |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R
𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
83 | 15, 1, 2, 20, 82 | suplocsrlemb 7747 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ P ∀𝑤 ∈ P (𝑣<P
𝑤 → (∃𝑢 ∈ 𝐵 𝑣<P 𝑢 ∨ ∀𝑢 ∈ 𝐵 𝑢<P 𝑤))) |
84 | 19, 81, 83 | suplocexpr 7666 |
1
⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) |