ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlempr GIF version

Theorem suplocsrlempr 7762
Description: Lemma for suplocsr 7764. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
suplocsrlem.ss (𝜑𝐴R)
suplocsrlem.c (𝜑𝐶𝐴)
suplocsrlem.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsrlem.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsrlempr (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Distinct variable groups:   𝑤,𝐴,𝑣,𝑦   𝑢,𝐴,𝑥,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑧   𝑤,𝐶,𝑣,𝑥,𝑦   𝑢,𝐶,𝑧   𝜑,𝑢,𝑣,𝑤,𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)

Proof of Theorem suplocsrlempr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suplocsrlem.ss . . . . . . . 8 (𝜑𝐴R)
2 suplocsrlem.c . . . . . . . 8 (𝜑𝐶𝐴)
31, 2sseldd 3148 . . . . . . 7 (𝜑𝐶R)
4 0idsr 7722 . . . . . . 7 (𝐶R → (𝐶 +R 0R) = 𝐶)
53, 4syl 14 . . . . . 6 (𝜑 → (𝐶 +R 0R) = 𝐶)
65, 2eqeltrd 2247 . . . . 5 (𝜑 → (𝐶 +R 0R) ∈ 𝐴)
7 1pr 7509 . . . . 5 1PP
86, 7jctil 310 . . . 4 (𝜑 → (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
9 opeq1 3763 . . . . . . . . 9 (𝑤 = 1P → ⟨𝑤, 1P⟩ = ⟨1P, 1P⟩)
109eceq1d 6547 . . . . . . . 8 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = [⟨1P, 1P⟩] ~R )
11 df-0r 7686 . . . . . . . 8 0R = [⟨1P, 1P⟩] ~R
1210, 11eqtr4di 2221 . . . . . . 7 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = 0R)
1312oveq2d 5867 . . . . . 6 (𝑤 = 1P → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R 0R))
1413eleq1d 2239 . . . . 5 (𝑤 = 1P → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R 0R) ∈ 𝐴))
15 suplocsrlem.b . . . . 5 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
1614, 15elrab2 2889 . . . 4 (1P𝐵 ↔ (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
178, 16sylibr 133 . . 3 (𝜑 → 1P𝐵)
18 elex2 2746 . . 3 (1P𝐵 → ∃𝑣 𝑣𝐵)
1917, 18syl 14 . 2 (𝜑 → ∃𝑣 𝑣𝐵)
20 suplocsrlem.ub . . . 4 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
21 breq1 3990 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝑦 <R 𝑥𝐶 <R 𝑥))
2221rspccv 2831 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴𝐶 <R 𝑥))
232, 22mpan9 279 . . . . . . . 8 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → 𝐶 <R 𝑥)
24 0lt1sr 7720 . . . . . . . . . . . . . 14 0R <R 1R
25 0r 7705 . . . . . . . . . . . . . . 15 0RR
26 1sr 7706 . . . . . . . . . . . . . . 15 1RR
27 m1r 7707 . . . . . . . . . . . . . . 15 -1RR
28 ltasrg 7725 . . . . . . . . . . . . . . 15 ((0RR ∧ 1RR ∧ -1RR) → (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R)))
2925, 26, 27, 28mp3an 1332 . . . . . . . . . . . . . 14 (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R))
3024, 29mpbi 144 . . . . . . . . . . . . 13 (-1R +R 0R) <R (-1R +R 1R)
31 0idsr 7722 . . . . . . . . . . . . . 14 (-1RR → (-1R +R 0R) = -1R)
3227, 31ax-mp 5 . . . . . . . . . . . . 13 (-1R +R 0R) = -1R
33 m1p1sr 7715 . . . . . . . . . . . . 13 (-1R +R 1R) = 0R
3430, 32, 333brtr3i 4016 . . . . . . . . . . . 12 -1R <R 0R
35 ltasrg 7725 . . . . . . . . . . . . 13 ((-1RR ∧ 0RR𝐶R) → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3627, 25, 3, 35mp3an12i 1336 . . . . . . . . . . . 12 (𝜑 → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3734, 36mpbii 147 . . . . . . . . . . 11 (𝜑 → (𝐶 +R -1R) <R (𝐶 +R 0R))
3837, 5breqtrd 4013 . . . . . . . . . 10 (𝜑 → (𝐶 +R -1R) <R 𝐶)
39 ltsosr 7719 . . . . . . . . . . 11 <R Or R
40 ltrelsr 7693 . . . . . . . . . . 11 <R ⊆ (R × R)
4139, 40sotri 5004 . . . . . . . . . 10 (((𝐶 +R -1R) <R 𝐶𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
4238, 41sylan 281 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
43 map2psrprg 7760 . . . . . . . . . . 11 (𝐶R → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
443, 43syl 14 . . . . . . . . . 10 (𝜑 → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4544adantr 274 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4642, 45mpbid 146 . . . . . . . 8 ((𝜑𝐶 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
4723, 46syldan 280 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
48 breq1 3990 . . . . . . . . . . 11 (𝑦 = (𝐶 +R [⟨𝑤, 1P⟩] ~R ) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
49 simpllr 529 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R 𝑥)
50 breq2 3991 . . . . . . . . . . . . . . 15 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑦 <R 𝑥))
5150ralbidv 2470 . . . . . . . . . . . . . 14 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5251adantl 275 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5349, 52mpbird 166 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5453adantr 274 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5515rabeq2i 2727 . . . . . . . . . . . . 13 (𝑤𝐵 ↔ (𝑤P ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
5655simprbi 273 . . . . . . . . . . . 12 (𝑤𝐵 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5756adantl 275 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5848, 54, 57rspcdva 2839 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5958ralrimiva 2543 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6059ex 114 . . . . . . . 8 (((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6160reximdva 2572 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → (∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6247, 61mpd 13 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6362ex 114 . . . . 5 (𝜑 → (∀𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6463rexlimdvw 2591 . . . 4 (𝜑 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6520, 64mpd 13 . . 3 (𝜑 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
66 elrabi 2883 . . . . . . . 8 (𝑤 ∈ {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴} → 𝑤P)
67 opeq1 3763 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → ⟨𝑤, 1P⟩ = ⟨𝑎, 1P⟩)
6867eceq1d 6547 . . . . . . . . . . . 12 (𝑤 = 𝑎 → [⟨𝑤, 1P⟩] ~R = [⟨𝑎, 1P⟩] ~R )
6968oveq2d 5867 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑎, 1P⟩] ~R ))
7069eleq1d 2239 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴))
7170cbvrabv 2729 . . . . . . . . 9 {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴} = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7215, 71eqtri 2191 . . . . . . . 8 𝐵 = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7366, 72eleq2s 2265 . . . . . . 7 (𝑤𝐵𝑤P)
7473adantl 275 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑤P)
75 simplr 525 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑣P)
763ad2antrr 485 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝐶R)
77 ltpsrprg 7758 . . . . . 6 ((𝑤P𝑣P𝐶R) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7874, 75, 76, 77syl3anc 1233 . . . . 5 (((𝜑𝑣P) ∧ 𝑤𝐵) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7978ralbidva 2466 . . . 4 ((𝜑𝑣P) → (∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑤𝐵 𝑤<P 𝑣))
8079rexbidva 2467 . . 3 (𝜑 → (∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
8165, 80mpbid 146 . 2 (𝜑 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣)
82 suplocsrlem.loc . . 3 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
8315, 1, 2, 20, 82suplocsrlemb 7761 . 2 (𝜑 → ∀𝑣P𝑤P (𝑣<P 𝑤 → (∃𝑢𝐵 𝑣<P 𝑢 ∨ ∀𝑢𝐵 𝑢<P 𝑤)))
8419, 81, 83suplocexpr 7680 1 (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  cop 3584   class class class wbr 3987  (class class class)co 5851  [cec 6509  Pcnp 7246  1Pc1p 7247  <P cltp 7250   ~R cer 7251  Rcnr 7252  0Rc0r 7253  1Rc1r 7254  -1Rcm1r 7255   +R cplr 7256   <R cltr 7258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-2o 6394  df-oadd 6397  df-omul 6398  df-er 6511  df-ec 6513  df-qs 6517  df-ni 7259  df-pli 7260  df-mi 7261  df-lti 7262  df-plpq 7299  df-mpq 7300  df-enq 7302  df-nqqs 7303  df-plqqs 7304  df-mqqs 7305  df-1nqqs 7306  df-rq 7307  df-ltnqqs 7308  df-enq0 7379  df-nq0 7380  df-0nq0 7381  df-plq0 7382  df-mq0 7383  df-inp 7421  df-i1p 7422  df-iplp 7423  df-imp 7424  df-iltp 7425  df-enr 7681  df-nr 7682  df-plr 7683  df-mr 7684  df-ltr 7685  df-0r 7686  df-1r 7687  df-m1r 7688
This theorem is referenced by:  suplocsrlem  7763
  Copyright terms: Public domain W3C validator