ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlempr GIF version

Theorem suplocsrlempr 7990
Description: Lemma for suplocsr 7992. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
suplocsrlem.ss (𝜑𝐴R)
suplocsrlem.c (𝜑𝐶𝐴)
suplocsrlem.ub (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
suplocsrlem.loc (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
Assertion
Ref Expression
suplocsrlempr (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Distinct variable groups:   𝑤,𝐴,𝑣,𝑦   𝑢,𝐴,𝑥,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑧   𝑤,𝐶,𝑣,𝑥,𝑦   𝑢,𝐶,𝑧   𝜑,𝑢,𝑣,𝑤,𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)

Proof of Theorem suplocsrlempr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suplocsrlem.ss . . . . . . . 8 (𝜑𝐴R)
2 suplocsrlem.c . . . . . . . 8 (𝜑𝐶𝐴)
31, 2sseldd 3225 . . . . . . 7 (𝜑𝐶R)
4 0idsr 7950 . . . . . . 7 (𝐶R → (𝐶 +R 0R) = 𝐶)
53, 4syl 14 . . . . . 6 (𝜑 → (𝐶 +R 0R) = 𝐶)
65, 2eqeltrd 2306 . . . . 5 (𝜑 → (𝐶 +R 0R) ∈ 𝐴)
7 1pr 7737 . . . . 5 1PP
86, 7jctil 312 . . . 4 (𝜑 → (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
9 opeq1 3856 . . . . . . . . 9 (𝑤 = 1P → ⟨𝑤, 1P⟩ = ⟨1P, 1P⟩)
109eceq1d 6714 . . . . . . . 8 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = [⟨1P, 1P⟩] ~R )
11 df-0r 7914 . . . . . . . 8 0R = [⟨1P, 1P⟩] ~R
1210, 11eqtr4di 2280 . . . . . . 7 (𝑤 = 1P → [⟨𝑤, 1P⟩] ~R = 0R)
1312oveq2d 6016 . . . . . 6 (𝑤 = 1P → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R 0R))
1413eleq1d 2298 . . . . 5 (𝑤 = 1P → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R 0R) ∈ 𝐴))
15 suplocsrlem.b . . . . 5 𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
1614, 15elrab2 2962 . . . 4 (1P𝐵 ↔ (1PP ∧ (𝐶 +R 0R) ∈ 𝐴))
178, 16sylibr 134 . . 3 (𝜑 → 1P𝐵)
18 elex2 2816 . . 3 (1P𝐵 → ∃𝑣 𝑣𝐵)
1917, 18syl 14 . 2 (𝜑 → ∃𝑣 𝑣𝐵)
20 suplocsrlem.ub . . . 4 (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)
21 breq1 4085 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝑦 <R 𝑥𝐶 <R 𝑥))
2221rspccv 2904 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝐶𝐴𝐶 <R 𝑥))
232, 22mpan9 281 . . . . . . . 8 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → 𝐶 <R 𝑥)
24 0lt1sr 7948 . . . . . . . . . . . . . 14 0R <R 1R
25 0r 7933 . . . . . . . . . . . . . . 15 0RR
26 1sr 7934 . . . . . . . . . . . . . . 15 1RR
27 m1r 7935 . . . . . . . . . . . . . . 15 -1RR
28 ltasrg 7953 . . . . . . . . . . . . . . 15 ((0RR ∧ 1RR ∧ -1RR) → (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R)))
2925, 26, 27, 28mp3an 1371 . . . . . . . . . . . . . 14 (0R <R 1R ↔ (-1R +R 0R) <R (-1R +R 1R))
3024, 29mpbi 145 . . . . . . . . . . . . 13 (-1R +R 0R) <R (-1R +R 1R)
31 0idsr 7950 . . . . . . . . . . . . . 14 (-1RR → (-1R +R 0R) = -1R)
3227, 31ax-mp 5 . . . . . . . . . . . . 13 (-1R +R 0R) = -1R
33 m1p1sr 7943 . . . . . . . . . . . . 13 (-1R +R 1R) = 0R
3430, 32, 333brtr3i 4111 . . . . . . . . . . . 12 -1R <R 0R
35 ltasrg 7953 . . . . . . . . . . . . 13 ((-1RR ∧ 0RR𝐶R) → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3627, 25, 3, 35mp3an12i 1375 . . . . . . . . . . . 12 (𝜑 → (-1R <R 0R ↔ (𝐶 +R -1R) <R (𝐶 +R 0R)))
3734, 36mpbii 148 . . . . . . . . . . 11 (𝜑 → (𝐶 +R -1R) <R (𝐶 +R 0R))
3837, 5breqtrd 4108 . . . . . . . . . 10 (𝜑 → (𝐶 +R -1R) <R 𝐶)
39 ltsosr 7947 . . . . . . . . . . 11 <R Or R
40 ltrelsr 7921 . . . . . . . . . . 11 <R ⊆ (R × R)
4139, 40sotri 5123 . . . . . . . . . 10 (((𝐶 +R -1R) <R 𝐶𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
4238, 41sylan 283 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → (𝐶 +R -1R) <R 𝑥)
43 map2psrprg 7988 . . . . . . . . . . 11 (𝐶R → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
443, 43syl 14 . . . . . . . . . 10 (𝜑 → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4544adantr 276 . . . . . . . . 9 ((𝜑𝐶 <R 𝑥) → ((𝐶 +R -1R) <R 𝑥 ↔ ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥))
4642, 45mpbid 147 . . . . . . . 8 ((𝜑𝐶 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
4723, 46syldan 282 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥)
48 breq1 4085 . . . . . . . . . . 11 (𝑦 = (𝐶 +R [⟨𝑤, 1P⟩] ~R ) → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
49 simpllr 534 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R 𝑥)
50 breq2 4086 . . . . . . . . . . . . . . 15 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑦 <R 𝑥))
5150ralbidv 2530 . . . . . . . . . . . . . 14 ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5251adantl 277 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → (∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑦𝐴 𝑦 <R 𝑥))
5349, 52mpbird 167 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5453adantr 276 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → ∀𝑦𝐴 𝑦 <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5515rabeq2i 2796 . . . . . . . . . . . . 13 (𝑤𝐵 ↔ (𝑤P ∧ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
5655simprbi 275 . . . . . . . . . . . 12 (𝑤𝐵 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5756adantl 277 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴)
5848, 54, 57rspcdva 2912 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) ∧ 𝑤𝐵) → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
5958ralrimiva 2603 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) ∧ (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥) → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6059ex 115 . . . . . . . 8 (((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) ∧ 𝑣P) → ((𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6160reximdva 2632 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → (∃𝑣P (𝐶 +R [⟨𝑣, 1P⟩] ~R ) = 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6247, 61mpd 13 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 𝑦 <R 𝑥) → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
6362ex 115 . . . . 5 (𝜑 → (∀𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6463rexlimdvw 2652 . . . 4 (𝜑 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R )))
6520, 64mpd 13 . . 3 (𝜑 → ∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ))
66 elrabi 2956 . . . . . . . 8 (𝑤 ∈ {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴} → 𝑤P)
67 opeq1 3856 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → ⟨𝑤, 1P⟩ = ⟨𝑎, 1P⟩)
6867eceq1d 6714 . . . . . . . . . . . 12 (𝑤 = 𝑎 → [⟨𝑤, 1P⟩] ~R = [⟨𝑎, 1P⟩] ~R )
6968oveq2d 6016 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝐶 +R [⟨𝑤, 1P⟩] ~R ) = (𝐶 +R [⟨𝑎, 1P⟩] ~R ))
7069eleq1d 2298 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴 ↔ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴))
7170cbvrabv 2798 . . . . . . . . 9 {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴} = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7215, 71eqtri 2250 . . . . . . . 8 𝐵 = {𝑎P ∣ (𝐶 +R [⟨𝑎, 1P⟩] ~R ) ∈ 𝐴}
7366, 72eleq2s 2324 . . . . . . 7 (𝑤𝐵𝑤P)
7473adantl 277 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑤P)
75 simplr 528 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝑣P)
763ad2antrr 488 . . . . . 6 (((𝜑𝑣P) ∧ 𝑤𝐵) → 𝐶R)
77 ltpsrprg 7986 . . . . . 6 ((𝑤P𝑣P𝐶R) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7874, 75, 76, 77syl3anc 1271 . . . . 5 (((𝜑𝑣P) ∧ 𝑤𝐵) → ((𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ 𝑤<P 𝑣))
7978ralbidva 2526 . . . 4 ((𝜑𝑣P) → (∀𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∀𝑤𝐵 𝑤<P 𝑣))
8079rexbidva 2527 . . 3 (𝜑 → (∃𝑣P𝑤𝐵 (𝐶 +R [⟨𝑤, 1P⟩] ~R ) <R (𝐶 +R [⟨𝑣, 1P⟩] ~R ) ↔ ∃𝑣P𝑤𝐵 𝑤<P 𝑣))
8165, 80mpbid 147 . 2 (𝜑 → ∃𝑣P𝑤𝐵 𝑤<P 𝑣)
82 suplocsrlem.loc . . 3 (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))
8315, 1, 2, 20, 82suplocsrlemb 7989 . 2 (𝜑 → ∀𝑣P𝑤P (𝑣<P 𝑤 → (∃𝑢𝐵 𝑣<P 𝑢 ∨ ∀𝑢𝐵 𝑢<P 𝑤)))
8419, 81, 83suplocexpr 7908 1 (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   class class class wbr 4082  (class class class)co 6000  [cec 6676  Pcnp 7474  1Pc1p 7475  <P cltp 7478   ~R cer 7479  Rcnr 7480  0Rc0r 7481  1Rc1r 7482  -1Rcm1r 7483   +R cplr 7484   <R cltr 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-imp 7652  df-iltp 7653  df-enr 7909  df-nr 7910  df-plr 7911  df-mr 7912  df-ltr 7913  df-0r 7914  df-1r 7915  df-m1r 7916
This theorem is referenced by:  suplocsrlem  7991
  Copyright terms: Public domain W3C validator