| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | 
| 2 |   | cbvrab.1 | 
. . . . . 6
⊢
Ⅎ𝑥𝐴 | 
| 3 | 2 | nfcri 2333 | 
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 | 
| 4 |   | nfs1v 1958 | 
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 5 | 3, 4 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) | 
| 6 |   | eleq1 2259 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | 
| 7 |   | sbequ12 1785 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 8 | 6, 7 | anbi12d 473 | 
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) | 
| 9 | 1, 5, 8 | cbvab 2320 | 
. . 3
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} | 
| 10 |   | cbvrab.2 | 
. . . . . 6
⊢
Ⅎ𝑦𝐴 | 
| 11 | 10 | nfcri 2333 | 
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 | 
| 12 |   | cbvrab.3 | 
. . . . . 6
⊢
Ⅎ𝑦𝜑 | 
| 13 | 12 | nfsb 1965 | 
. . . . 5
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 | 
| 14 | 11, 13 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) | 
| 15 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | 
| 16 |   | eleq1 2259 | 
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 17 |   | sbequ 1854 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 18 |   | cbvrab.4 | 
. . . . . . 7
⊢
Ⅎ𝑥𝜓 | 
| 19 |   | cbvrab.5 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 20 | 18, 19 | sbie 1805 | 
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 21 | 17, 20 | bitrdi 196 | 
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) | 
| 22 | 16, 21 | anbi12d 473 | 
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 23 | 14, 15, 22 | cbvab 2320 | 
. . 3
⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | 
| 24 | 9, 23 | eqtri 2217 | 
. 2
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | 
| 25 |   | df-rab 2484 | 
. 2
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | 
| 26 |   | df-rab 2484 | 
. 2
⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | 
| 27 | 24, 25, 26 | 3eqtr4i 2227 | 
1
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |