Step | Hyp | Ref
| Expression |
1 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) |
2 | | cbvrab.1 |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
3 | 2 | nfcri 2293 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | | nfs1v 1919 |
. . . . 5
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
5 | 3, 4 | nfan 1545 |
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | | eleq1 2220 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
7 | | sbequ12 1751 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
8 | 6, 7 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
9 | 1, 5, 8 | cbvab 2281 |
. . 3
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
10 | | cbvrab.2 |
. . . . . 6
⊢
Ⅎ𝑦𝐴 |
11 | 10 | nfcri 2293 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 |
12 | | cbvrab.3 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
13 | 12 | nfsb 1926 |
. . . . 5
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
14 | 11, 13 | nfan 1545 |
. . . 4
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
15 | | nfv 1508 |
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) |
16 | | eleq1 2220 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
17 | | sbequ 1820 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
18 | | cbvrab.4 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
19 | | cbvrab.5 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
20 | 18, 19 | sbie 1771 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
21 | 17, 20 | bitrdi 195 |
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
22 | 16, 21 | anbi12d 465 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 15, 22 | cbvab 2281 |
. . 3
⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
24 | 9, 23 | eqtri 2178 |
. 2
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
25 | | df-rab 2444 |
. 2
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
26 | | df-rab 2444 |
. 2
⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
27 | 24, 25, 26 | 3eqtr4i 2188 |
1
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |