| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrab1 | GIF version | ||
| Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
| Ref | Expression |
|---|---|
| nfrab1 | ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nfab1 2374 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 1, 2 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 |
| This theorem is referenced by: repizf2 4245 rabxfrd 4559 onintrab2im 4609 tfis 4674 fvmptssdm 5718 infssuzcldc 10450 nnwosdc 12555 imasnopn 14967 lfgrnloopen 15925 |
| Copyright terms: Public domain | W3C validator |