| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrab1 | GIF version | ||
| Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
| Ref | Expression |
|---|---|
| nfrab1 | ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nfab1 2341 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | 1, 2 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 |
| This theorem is referenced by: repizf2 4195 rabxfrd 4504 onintrab2im 4554 tfis 4619 fvmptssdm 5646 infssuzcldc 10325 nnwosdc 12206 imasnopn 14535 |
| Copyright terms: Public domain | W3C validator |