Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrab1 | GIF version |
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfrab1 | ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2453 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | nfab1 2310 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 1, 2 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 {crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 |
This theorem is referenced by: repizf2 4141 rabxfrd 4447 onintrab2im 4495 tfis 4560 fvmptssdm 5570 infssuzcldc 11884 nnwosdc 11972 imasnopn 12939 |
Copyright terms: Public domain | W3C validator |