Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrab1 | GIF version |
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfrab1 | ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | nfab1 2301 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 1, 2 | nfcxfr 2296 | 1 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2128 {cab 2143 Ⅎwnfc 2286 {crab 2439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 |
This theorem is referenced by: repizf2 4125 rabxfrd 4431 onintrab2im 4479 tfis 4544 fvmptssdm 5554 infssuzcldc 11850 imasnopn 12769 |
Copyright terms: Public domain | W3C validator |