ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 GIF version

Theorem nfrab1 2685
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1 𝑥{𝑥𝐴𝜑}

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2492 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 nfab1 2349 . 2 𝑥{𝑥 ∣ (𝑥𝐴𝜑)}
31, 2nfcxfr 2344 1 𝑥{𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2175  {cab 2190  wnfc 2334  {crab 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492
This theorem is referenced by:  repizf2  4205  rabxfrd  4514  onintrab2im  4564  tfis  4629  fvmptssdm  5658  infssuzcldc  10359  nnwosdc  12279  imasnopn  14689
  Copyright terms: Public domain W3C validator