ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 GIF version

Theorem nfrab1 2687
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1 𝑥{𝑥𝐴𝜑}

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2494 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 nfab1 2351 . 2 𝑥{𝑥 ∣ (𝑥𝐴𝜑)}
31, 2nfcxfr 2346 1 𝑥{𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2177  {cab 2192  wnfc 2336  {crab 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494
This theorem is referenced by:  repizf2  4214  rabxfrd  4524  onintrab2im  4574  tfis  4639  fvmptssdm  5677  infssuzcldc  10400  nnwosdc  12435  imasnopn  14846
  Copyright terms: Public domain W3C validator