ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 GIF version

Theorem nfrab1 2711
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1 𝑥{𝑥𝐴𝜑}

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2517 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 nfab1 2374 . 2 𝑥{𝑥 ∣ (𝑥𝐴𝜑)}
31, 2nfcxfr 2369 1 𝑥{𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2200  {cab 2215  wnfc 2359  {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517
This theorem is referenced by:  repizf2  4245  rabxfrd  4559  onintrab2im  4609  tfis  4674  fvmptssdm  5718  infssuzcldc  10450  nnwosdc  12555  imasnopn  14967  lfgrnloopen  15925
  Copyright terms: Public domain W3C validator