ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbi GIF version

Theorem rabbi 2668
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2740. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2303 . 2 (∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)) ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
2 df-ral 2473 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
3 pm5.32 453 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43albii 1481 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
52, 4bitri 184 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
6 df-rab 2477 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
7 df-rab 2477 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
86, 7eqeq12i 2203 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
91, 5, 83bitr4i 212 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2160  {cab 2175  wral 2468  {crab 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-ral 2473  df-rab 2477
This theorem is referenced by:  rabbidva  2740  exmidonfinlem  7222
  Copyright terms: Public domain W3C validator